
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1-1-2001

Finite element analysis of longitudinal glulam
timber deck and glulam timber girder bridges
Anil Varughese Kurian
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Kurian, Anil Varughese, "Finite element analysis of longitudinal glulam timber deck and glulam timber girder bridges" (2001).
Retrospective Theses and Dissertations. 17537.
https://lib.dr.iastate.edu/rtd/17537

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F17537&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F17537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F17537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F17537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F17537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F17537&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=lib.dr.iastate.edu%2Frtd%2F17537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/17537?utm_source=lib.dr.iastate.edu%2Frtd%2F17537&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Finite element analysis of longitudinal glulam timber deck and glulam timber girder bridges 

by 

Anil Varughese Kurian 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Major: Civil Engineering (Structural Engineering) 

Major Professors: Terry J. Wipf and Fouad Fanous 

Iowa State University 

Ames, Iowa 

2001 



www.manaraa.com

11 

Graduate College 
Iowa State University 

This is to certify that the Master ' s thesis of 

Anil Varughese Kurian 

has met the thesis requirements of Iowa State University 

Signatures have been redacted for privacy 

Signatures have been redacted for privacy 



www.manaraa.com

111 

TABLE OF CONTENTS 

LIST OF FIGURES Vll 

LIST OF TABLES Xlll 

1. INTRODUCTION 

1.1 General 1 

1.2 Background 2 

1.3 Properties of wood 2 

1.4 Objective and scope of report 4 

1.5 Software selection 5 

2. LONGITUDINAL GLULAM TIMBER DECK BRIDGES 6 

2.1 Description of deck bridges 6 

2.2 Design procedures for deck bridges 9 

2.3 Analytical model of bridge 14 

2.3.1 Modeling the deck panels 14 

2.3.2 Modeling the stiffener beams 14 

2.3.3 Modeling the connections 16 

2.3.4 Modeling the curbs 16 

2.3.5 Modeling the loads and abutment supports 17 

2.4 Mesh size determination 19 

2.5 Preprocessor and postprocessor for longitudinal glulam deck bridges 21 

3. COMPARISON OF EXPERIMENT AL AND ANALYTICAL DAT A FOR 
LONGITUDINAL DECK BRIDGES 23 



www.manaraa.com

3.1 General 

3 .2 The Angelica Bridge, NY 

3 .2.1 Description 

3.2.2 Loading 

3.2.3 Parametric study 

IV 

23 

23 

23 

26 

26 

3.2.4 Comparison of maximum design stress and maximum stress from analysis 28 

3.2.5 Results and discussion 

3.3 The Bolivar Bridge, NY 

3 .3 .1 Description 

3.3.2 Loading 

3.3.3 Parametric study 

28 

40 

40 

40 

42 

3.3.4 Comparison of maximum design stress and maximum stress from analysis 43 

3.3.5 Results and discussion 

4. GLUED LAMINATED GIRDER BRIDGES 

4.1 Description of girder bridges 

4.2 Design procedures for girder bridges 

4.2.1 The non-interconnected glulam deck 

4.2.2 The glulam girder 

4.3 Analytical model of bridge 

4.3 .1 Modeling the deck panels 

4.3.2 Modeling the girders 

4.3.3 Modeling the curbs 

4.3.4 Modeling the loads and abutment supports 

45 

53 

53 

56 

56 

60 

63 

63 

64 

64 

64 



www.manaraa.com

V 

4.4 Preprocessor and postprocessor for glulam girder bridges 65 

5. COMPARISON OF EXPERIMENT AL AND ANALYTICAL DAT A FOR 
GIRDER BRIDGES 67 

5.1 General 67 

5.2 The Cow Gulch Bridge, Montana 67 

5.2.1 Description 67 

5.2.2 Loading 70 

5.2.3 Parametric study 70 

5.2.4 Comparison of maximum design stress and maximum stress from analysis 72 

5.2.5 Results and discussion 72 

5.3 The Wittson Bridge - Span 3, Alabama 86 

5.3.1 Description 86 

5.3.2 Loading 88 

5.3.3 Parametric study 89 

5.3.4 Comparison of maximum design stress and maximum stress from analysis 90 

5.3.5 Results and discussion 90 

5.4 The Chambers County Bridge, Auburn 95 

5.4.1 Description 95 

5.4.2 Loading 95 

5.4.3 Parametric study 99 

5.4.4 Comparison of maximum design stress and maximum stress from analysis 99 

5.4.5 Results and discussion 100 

5.5 The Hibbard Creek Bridge, Montana 100 



www.manaraa.com

5. 5 .1 Skew bridges 

5.5 .2 Description 

5.5.3 Loading 

5.5.4 Parametric study 

Vl 

100 

107 

108 

110 

5.5.5 Comparison of maximum design stress and maximum stress from analysisl 10 

5.5.6 Results and discussion 111 

6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 123 

6.1 Summary 123 

6.2 Conclusions 124 

6.3 Recommendations 124 

APPENDIX A. PREPROCESSOR LISTING FOR RIGHT ANGLED 
LONGITUDINAL TIMBER DECK BRIDGE WITH COMMENTS 126 

APPENDIX B. PREPROCESSOR LISTING FOR TIMBER GLULAM GIRDER 
BRIDGE WITH COMMENTS 141 

APPENDIX C. DESCRIPTION OF THE USAGE OF THE PROGRAMS FOR 
ANALYZING GLULAM DECK BRIDGES AND GLULAM GIRDER BRIDGES 158 

C.1 Procedure to use the programs with ANSYS 158 

C.2 Limitations of programs 159 

C.3 User manual for preprocessor for right angled longitudinal glulam deck bridges 159 

C .4 User manual for preprocessor for gl ulam girder bridges 163 

C.5 Example problem for longitudinal timber glulam deck bridge 166 

C.6 Example problem for glulam girder bridge 170 

REFERENCES 175 

ACKNOWLEDGEMENTS 177 



www.manaraa.com

vu 

LIST OF FIGURES 

Fig. 1.1 The three principal axes of wood [ 1]. 3 

Fig. 2.1 Generic photo of a longitudinal glulam timber deck bridge. 7 

Fig. 2.2 Configuration of a typical longitudinal deck bridge. 8 

Fig. 2.3 SHELL63 element used to model the deck panels [ 11]. 15 

Fig. 2.4 BEAM4 element used to model the stiffener beam and curbs [11]. 15 

Fig. 2.5 Sign convention used by Desai [12] for his interpolation functions. 18 

Fig. 2.6 Plan layout of bridge used for mesh sensitivity analysis . 20 

Fig. 2.7 Panel deflections at midspan for mesh sensitivity analysis. 20 

Fig. 2.8 Analytical model of a typical deck bridge with four panels and one stiffener 
beam. 22 

Fig. 3 .1 The Angelica Bridge in NY. 24 

Fig. 3.2 Plan layout of the Angelica Bridge. 25 

Fig. 3.3 Configuration of trucks and load positions for various load cases. 27 

Fig. 3.4 Analytical model of the Angelica Bridge. 30 

Fig. 3.5 Comparison of deck analytical and experimental deflection upon changing 
deck longitudinal modulus of elasticity for Load Cases 1 and 3. 31 

Fig. 3.6 Comparison of deck experimental and analytical deflection upon varying 
curb height for Load Cases 1 and 3. 32 

Fig. 3.7 Comparison of deck experimental and analytical deflection upon changing 
deck transverse modulus of elasticity for Load Cases 1 and 3. 33 

Fig. 3.8 Comparison of deck experimental and analytical deflection upon changing 
modulus of elasticity of stiffener beams for Load Cases 1 and 3. 34 

Fig. 3.9 Comparison of deck experimental and analytical deflection upon changing 
stiffener beam cross section dimension for Load Cases 1 and 3. 35 



www.manaraa.com

Fig.3.10 

Fig. 3.11 

Fig. 3.12 

Fig. 3.13 

Fig. 3.14 

Fig.3.15 

Fig.3.16 

Fig. 3.17 

Fig.3 .18 

Fig. 3.19 

Fig. 3.20 

Fig. 3.21 

Fig. 3.22 

Fig. 3.23 

Fig. 3.24 

Fig. 3.25 

Fig. 4.1 

Vlll 

Comparison of deck experimental and analytical deflection upon changing 
support conditions for Load Cases 1 and 3. 36 

Comparison of deck experimental and analytical deflection for Load 
Case 2. 37 

Comparison of deck experimental and analytical deflection for Load 
Case 4. 37 

Comparison of deck experimental and analytical deflection for Load 
Case 5. 38 

Comparison of deck experimental and analytical deflection for Load 
Case 6. 38 

The Bolivar Bridge in NY. 41 

Plan layout of the Bolivar Bridge. 43 

Configuration of trucks and load positions for various load cases. 44 

Analytical model of the Bolivar Bridge. 46 

Comparison of deck analytical and experimental deflection upon changing 
deck longitudinal modulus of elasticity for Load Cases 1 and 3. 47 

Comparison of deck experimental and analytical deflection upon varying 
curb height for Load Cases 1 and 3. 48 

Comparison of deck experimental and analytical deflection upon changing 
support conditions for Load Cases 1 and 3. 49 

Comparison of deck experimental and analytical deflection for Load 
Case 2. 50 

Comparison of deck experimental and analytical deflection for Load 
Case 4. 50 

Comparison of deck experimental and analytical deflection for Load 
Case 5. 51 

Comparison of deck experimental and analytical deflection for Load 
Case 6. 51 

Generic photo of a glulam girder bridge. 54 



www.manaraa.com

Fig. 4.2 

Fig. 4.3 

Fig. 5.1 

Fig. 5.2 

Fig. 5.3 

Fig. 5.4 

Fig. 5.5 

Fig. 5.6 

Fig. 5.7 

Fig. 5.8 

Fig. 5.9 

Fig.5 .10 

Fig. 5.11 

Fig. 5.12 

Fig. 5.13 

Fig. 5.14 

Fig.5.15 

Fig. 5.16 

lX 

Configuration of a typical glued laminated girder bridge. 55 

Analytical model of a typical girder bridge with four girders. 66 

The Cow Gulch Bridge in Montana. 68 

Plan layout of the Cow Gulch Bridge. 69 

Configuration of trucks and load positions for various load cases. 71 

Comparison of girder deflections at midspan upon changing longitudinal 
modulus of elasticity of the girders for Load Cases 1 and 3. 7 4 

Comparison of analytical girder bending stresses at midspan upon changing 
longitudinal modulus of elasticity of the girders for Load Cases 1 and 3. 75 

Comparison of girder deflections at midspan upon varying curb height for 
Load Cases 1 and 3. 7 6 

Comparison of analytical girder bending stresses at midspan upon varying 
curb height for Load Cases 1 and 3. 77 

Comparison of girder deflections at midspan upon changing longitudinal 
modulus of elasticity of the deck for Load Cases 1 and 3. 78 

Comparison of analytical girder bending stresses at midspan upon changing 
longitudinal modulus of elasticity of the deck for Load Cases 1 and 3. 79 

Comparison of girder deflections at midspan upon changing transverse 
modulus of elasticity of the deck for Load Cases 1 and 3. 80 

Comparison of analytical girder bending stresses at midspan upon changing 
transverse modulus of elasticity of the deck for Load Cases 1 and 3. 81 

Comparison of girder deflections at midspan upon changing support 
conditions for Load Cases 1 and 3. 82 

Comparison of girder deflections at midspan for Load Case 2. 83 

Comparison of girder deflections at midspan for Load Case 4. 83 

Comparison of girder deflections at midspan for Load Case 5. 84 

Comparison of girder deflections at midspan for Load Case 6. 84 



www.manaraa.com

Fig. 5.17 

Fig. 5.18 

Fig.5.19 

Fig. 5.20 

Fig. 5.21 

Fig. 5.22 

Fig. 5.23 

Fig. 5.24 

Fig. 5.25 

Fig. 5.26 

Fig. 5.27 

Fig. 5.28 

Fig. 5.29 

Fig. 5.30 

Fig. 5.31 

Fig. 5.32 

Fig. 5.33 

Fig. 5.34 

Fig. 5.35 

X 

Comparison of analytical girder deflections and bending stresses at midspan 
for mesh sensitivity analysis of the Cow Gulch Bridge. 85 

The Wittson (Tuscaloosa) Bridge in Alabama. 87 

Plan layout of the Wittson Bridge - Span 3. 88 

Configuration of trucks and load positions for various load cases. 89 

Comparison of girder deflections and bending stresses at midspan upon 
changing longitudinal modulus of elasticity of the girders for Load Case 1. 91 

Comparison of girder deflections at midspan upon changing support 
conditions for Load Case 1. 92 

Comparison of girder deflections at midspan for Load Case 2. 92 

Comparison of girder deflections at midspan for Load Case 3. 93 

Comparison of girder deflections and bending stresses at midspan for mesh 
sensitivity analysis of the Tuscaloosa Bridge - Span 3. 94 

The Chambers County Bridge in Auburn. 96 

Plan layout of the Chambers County Bridge. 97 

Configuration of trucks and load positions for various load cases. 98 

Comparison of girder deflections at midspan upon changing longitudinal 
modulus of elasticity of the girders for Load Cases 1 and 2. 101 

Comparison of analytical girder bending stresses at midspan upon changing 
longitudinal modulus of elasticity of the girders for Load Cases 1 and 2. 102 

Comparison of girder deflections at midspan upon changing support conditions 
for Load Cases 1 and 2. 103 

Comparison of girder deflections at midspan for Load Case 3. 

Comparison of girder deflections at midspan for Load Case 4. 

Comparison of girder deflections at midspan for Load Case 5. 

Comparison of girder deflections at midspan for Load Case 6. 

104 

104 

105 

105 



www.manaraa.com

Fig. 5.36 

Fig. 5.37 

Fig. 5.38 

Fig. 5.39 

Fig. 5.40 

Fig. 5.41 

Fig. 5.42 

Fig. 5.43 

Fig. 5.44 

Fig. 5.45 

Fig. 5.46 

Fig. 5.47 

Fig. 5.48 

Fig. C.1 

Fig. C.2 

Xl 

Comparison of girder deflections and bending stresses at midspan for mesh 
sensitivity analysis of the Chambers County Bridge. 106 

Plan layout of the Hibbard Creek Bridge. 108 

Configuration of trucks and load positions for various load cases. 109 

Comparison of deflection curves of girders at midspan upon changing 
longitudinal modulus of elasticity of the girders for Load Cases 1 and 3. 113 

Comparison of analytical girder bending stresses at midspan upon changing 
longitudinal modulus of elasticity of the girders for Load Cases 1 and 3. 114 

Comparison of girder deflection at midspan upon varying curb height for 
Load Cases 1 and 3. 115 

Comparison of analytical girder bending stresses at midspan upon varying 
curb height for Load Cases 1 and 3. 116 

Comparison of girder deflections at midspan upon changing support 
conditions for Load Cases 1 and 3. 11 7 

Comparison of girder deflections at midspan for Load Case 2. 118 

Comparison of girder deflections at midspan for Load Case 4. 118 

Comparison of girder deflections at midspan for Load Case 5. 119 

Comparison of girder deflections at midspan for Load Case 6. 119 

Comparison of girder deflections and bending stresses at midspan for mesh 
sensitivity analysis of the Hibbard Creek Bridge. 120 

Sketch showing the Cartesian coordinate axes for the longitudinal glulam 
deck bridge. 160 

Sketch showing the Cartesian coordinate axes for the glulam girder bridge 164 



www.manaraa.com

Xll 

LIST OF TABLES 

Table 2.1 Maximum bending stresses for panel and stiffener beam at midspan. 21 

Table 3.1 Maximum bending stresses at midspan for panel and stiffener beam 
(Angelica Bridge). 39 

Table 3.2 Maximum bending stresses at midspan for panel and stiffener beam 
(Bolivar Bridge). 52 

Table C.1 Midspan panel deflections (inches). 169 

Table C.2 Stresses in stiffener beam close to midspan (psi). 170 

Table C.3 Midspan girder deflections (inches). 174 

Table C.4 Midspan girder bending stresses (psi) . 174 



www.manaraa.com

1 

1. INTRODUCTION 

1.1 General 

The three most common materials used for bridge construction are wood, steel and 

reinforced concrete. Although in the 20th century, concrete and steel replaced wood as the 

major materials for bridge construction, wood is still widely used for short and medium span 

bridges. Of the bridges in the United States with spans longer than 20 feet, approximately 12 

percent are made of timber. In the USDA Forest Service alone, approximately 7,500 timber 

bridges are in use, and more are built each year [ 1]. 

The advantages of timber bridges include lightweight, high span-to-weight ratio, 

durability, capability of supporting short-term overloads without adverse effects, good fire 

resistance qualities, competitiveness in cost terms with other materials in small bridge · 

construction, and immunity to deteriorating effects of de-icing agents. Timber bridges can be 

constructed in any weather condition, and do not require special installation equipment. They 

also present a natural and aesthetically pleasing appearance. 

Glulam, which is the most widely used modern timber bridge material, is 

manufactured by bonding sawn lumber laminations together with waterproof structural 

adhesives. Thus, glulam members can be manufactured in a wide range of shapes with 

unlimited length, width and depth. Glulam provides higher design strengths than sawn 

lumber and permits manufacture of large wood structural elements from smaller lumber 

sizes. Technological advances in laminating have further increased the suitability and 

performance of wood for bridge applications . 
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1.2 Background 

Over the past few years, research has been conducted on longitudinal timber deck 

bridges and girder bridges at Iowa State University (ISU). In 1985, ISU conducted an 

analytical study to develop design criteria for the live load distribution of longitudinal deck 

bridges. Additional experimental and analytical work was carried out to investigate the 

behavior of longitudinal deck bridges by Funke [2], Bisat [3] , and Hajdu [4] at ISU. Bhari [5] 

did a sensitivity study on the connection between girders and the deck in girder bridges by 

using various analytical models. The dynamic behavior of timber girder bridges and stress 

laminated timber bridges was studied in detail by Dlabola [6] and Johnson [7], respectively. 

A number of analytical models have been developed in past work to successfully 

analyze the behavior of timber bridges. With the computer age, finite element analysis has 

become extensively popular in the analysis of complex structures. In previous analytical 

modeling oflongitudinal deck bridges and girder bridges, Funke [2], Bisat [3], Hajdu [4], 

Bhari [5], Dlabola [6], and Johnson [7] have used the finite element method. 

1.3 Properties of wood 

Wood is an orthotropic material with unique and independent properties in different 

directions. Because of the orientation of the wood fibers, and the manner in which trees 

increase in diameter as they grow, properties vary along three mutually perpendicular axes : 

longitudinal, radial and tangential (Fig. 1.1 ). Most wood properties for structural applications 

are given only for directions parallel (longitudinal) and perpendicular to the grain (radial and 

tangential) since the differences in wood properties between the radial and tangential 

directions is minor compared to their mutual differences in the longitudinal direction. 
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(x-direction) 

3 

Tangential (y-direction) 

Fig. 1.1 The three principal axes of wood [1]. 

The ANSYS finite element software [8] denotes these material properties by 

associating them with the corresponding material axes (Fig. 1.1 ), as shown below: 

E x,y,z - Young' s modulus in the longitudinal, tangential and radial directions, 
respectively. 

G xy,yz,zx - Shear modulus in the x-y, y-z and z-x planes, respectively. 
Yxy,yz,zx - Major Poisson ' s ratio in the x-y, y-z, and z-x planes, respectively. 

The ANSYS software allows the user to input Ex, Ey, and G xy· E 2 defaults to E y, and 

G yz, and G 2x default to G xy • The user is also given an option to enter Poisson' s ratio, Yxy, 

which defaults to the value of zero. The AN SYS software relates the state of stress and strain 

in a body by the elasticity matrix, [D]. Fatal errors occur in the program if the inverse of the 

elasticity matrix, [Dr 1, is not positive definite. The [Dr 1 matrix is also presumed to be 

symmetric. The use of Poisson' s ratios for orthotropic materials causes confusion, so care 

should be taken in their use . To assure that the [Dr1 matrix is positive definite and 

symmetric, the following relationship must be satisfied: 
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where i,j = x,y,z , and i =1:- j . 

1/Ex -vx/ Ex -vx/Ex 0 0 0 

-vyx!Ey 1/Ey -Vyz/Ey 0 0 0 

[Dr 1 = -VzxlEz -vx/Ez 1/Ez 0 0 0 

0 0 0 1/Gxy 0 0 

0 0 0 0 1/Gyz 0 

0 0 0 0 0 1/Gxz 

1.4 Objective and scope of report 

Iowa State University (ISU) and the Forest Products Lab (FPL) at Madison, 

Wisconsin have done extensive load testing of timber bridges around the country to study the 

behavior of timber bridges and improve upon the existing design methodologies for various 

types of timber bridges. The author's work has been to develop an effective analysis tool to 

aid ISU and FPL with their bridge evaluation. Hence, the objective of this study is three-fold: 

1. To make efficient finite element models of the longitudinal glulam deck bridge and 

the glulam girder bridge that would aid in accurately predicting the behavior of these 

bridges. The finite element models must include all bridge components that contribute 

to the structural behavior of the bridge. 

2. To develop user friendly pre- and post-processors in ANSYS [8] that would not 

require an in-depth knowledge of the finite element method and need only minimum 
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user input. The pre-processors model and analyze the bridges while the post

processors output the deflections and stresses at key locations on the bridge. 

3. To perform a parametric study to investigate the sensitivity of analytical results to 

varying material properties, end restraints, edge stiffening and the manner in which 

loads are applied to the model. 

The above objectives were accomplished by analyzing two right-angled glued 

laminated deck bridges, three right-angled girder bridges and one skew girder bridge. The 

analytical results were compared to available experimental data and the models were 

validated. 

1.5 Software Selection 

The analysis of longitudinal deck bridges and girder bridges was accomplished by 

using ANSYS 5.5 finite element software for structural analysis [8). ANSYS was considered 

appropriate because it is a powerful, general-purpose software that is capable of analyzing 

complex structures. The software is well established, well calibrated and has an excellent 

graphical user interface. 
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2. LONGITUDINAL GLULAM TIMBER DECK BRIDGES 

2.1 Description of deck bridges 

Longitudinal deck bridges consist of a glulam timber deck placed over two or more 

substructure supports (Fig. 2.1 ). The lumber laminations are placed parallel to traffic, and 

loads are applied parallel to the wide face of the laminations. Transverse stiffener beams are 

connected to the deck underside to distribute loads laterally across the bridge width. 

Longitudinal deck bridges provide a low profile that makes them especially suitable for 

short-span applications where clearance below the structure is limited. 

Longitudinal deck bridges consist of a series of glulam panels placed edge to edge 

across the deck width. They are practical for clear spans up to approximately 3 5 feet and are 

equally adaptable to single-lane and multiple-lane crossings. The panels are usually not 

interconnected with dowels or fasteners, but are provided with transverse stiffener beams 

below the deck. These stiffener beams are bolted to the panels directly (through-bolts) or 

with brackets, and their main function is to provide lateral or transverse continuity to the 

system. They are also frequently used as a point of attachment for railing systems. The 

configuration of a typical longitudinal deck bridge is shown in Fig. 2.2. 

The deck panels are usually 42 to 54 inches wide in increments equal to net 

lamination thickness (1.5 inches for western species and 1.375 inches for Southern Pine). 

They can be manufactured in any length subject to local pressure treating and transportation 

restrictions. The deck thickness is usually between 5 inches to 10. 75 inches. 
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(a) Side view. 

(b) Bottom view showing stiffener beams connected to the deck with thru-bolts. 

Fig. 2.1 Generic photo of a longitudinal glulam timber deck bridge. 
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( d) Connections between deck and stiffener. 

Fig. 2.2 Continued. 

2.2 Design procedures for deck bridges 

Deck panels for longitudinal glulam bridges are designed as individual glulam beams 

of rectangular cross-section, Distribution factors are used to distribute the vehicle wheel line 

load to each panel, The bending, deflection, shear, and reactions distributed to each panel are 

assumed to be resisted by the entire panel cross-section, The design procedures for 

longitudinal deck bridges are explained in greater detail below, These procedures are valid 

for panels that are 3,5 - 4,5 feet wide and are provided with transverse stiffener beams [1] . 

Initially, the basic geometric requirements for the deck are defined, The effective 

deck span, 'L ', is defined as the distance measured center-to-center of bearings. The deck 

width is the roadway width plus any additional width required for curb and railing systems. 

The design loads and load distribution criteria are also determined beforehand, The deck 

thickness and width must be estimated for initial calculations. Approximate deck thickness 



www.manaraa.com

10 

for certain maximum deck spans may be obtained from [ 1]. Based on the estimated panel 

dimensions, properties for the panel cross-section are computed as follows: 

Panel area (in2) = A = w p t 
Section modulus of panel (in3) = Sy= w p t2 /6 
Moment of inertia of panel (in 4) = Iy = w P t3 / l 2 

where wP = panel width (in), and 
t = panel thickness (in). 

When railings and curbs are supported by transverse stiffener beams, the dead load is 

normally assumed to be equally distributed to all panels. When railings and curbs are 

attached to the outside panel, their dead load is included with the dead load of the panel. 

Longitudinal glulam panels are designed as individual members to resist applied loads. In the 

direction of the deck span, no longitudinal distribution of wheel loads is assumed, and wheel 

loads act as concentrated loads. The portion of the wheel line laterally distributed to each 

panel is based on the Wheel Load Fraction (WLF). 

WLF = wP I (4.25 + L/28) OR wP I 5.50, whichever is greater (one traffic lane) 
= wP I (3.75 + L/28) OR wp I 5.00, whichever is greater (two or more traffic lanes) 

where wP = panel width in feet, and 
L= deck span in feet measured center-to-center of bearings. 

Based on the magnitude of the deck bending stress , 'fi ', a panel combination symbol 

with the required bending capacity is selected from Table 2 of AITC 117-Design [9]. If the 

applied bending stress, 'fi ', is greater than the allowable bending stress, 'Fb '', the deck is 

insufficien~ in bending and the deck thickness or grade must be increased. If deck thickness 

or width is changed, the design procedures must be repeated. lf/b:::; Fb ', the initial deck 

thickness and combination symbol are satisfactory in bending. 

}b = (MDL + M LL)/ Sy 
M oL = woL L2 I 8 
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where MDL = dead load moment of one panel, 
MLL = live load moment applied to one panel, 
w DL = panel dead load, 
M wL = maximum moment produced by one wheel line of the design vehicle, 
F by = tabulated bending stress from [9] for particular combination symbol , 
CF = size factor for panels less than 12 inches thick [ 1], and 
CM= wet-use factor for glulam = 0.80 [1]. 

Live load deflection is resisted by the full moment of inertia, 'ly ', of the panel section. 

The deflection applied to each panel is the maximum deflection produced by one wheel line 

of the design vehicle times the 'WLF '. The deck live load deflection is computed by standard 

methods of elastic analysis, with the glulam modulus of elasticity, 'E ', adjusted for wet-use 

conditions. Requirements for live load deflection are not included in AASHTO 

specifications, and the acceptable deflection limit is left to designer judgment [1]. Since 

continuity from panel to panel is provided only at stiffener beam locations, relative panel 

displacements do occur at locations between these beams. Research at ISU [ 1 OJ indicates that 

the inter-panel displacement will not exceed approximately 0.1 inch in most applications . A 

further reduction is desirable to reduce the potential for asphalt cracks at the panel joints, or 

when the bridge includes a pedestrian walkway. 

Horizontal shear is normally not a controlling factor in longitudinal deck design 

because of the relatively large panel area. Dead load vertical shear is computed at a distance 

from the support equal to the deck thickness, 't ', neglecting the loads within the distance 't' 

from the supports. Live load vertical shear is based on the maximum vertical shear occurring 

at a distance from the support equal to three times the deck thickness (3t), or the span quarter 

point (L/4) , whichever is less . Horizontal shear stress is assumed to be resisted by the total 
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area of the panel cross-section, 'A '. Applied stress, 'fv ', must not be greater than the 

allowable shear stress for deck combination symbol , 'Fv " : 

VDL = WDL (L/2 - t) 
VLL = Vin ( WLF) 
Fv = 1.5 VIA,_:;_ Fv' = Fvy CM 

where V = VDL + VLL, 
Fvy = tabulated shear stress from [9] for particular combination symbol, and 
CM= wet-use factor for shear = 0.875 [1 ]. 

In practice, stiffener beams are used for guardrail post attachment, and therefore, 

stiffener spacing, strength, and connections may be dictated by more restrictive railing 

requirements. AASHTO specifications (AASHTO 3.25 .3.4) require that a stiffener beam be 

placed at midspan for all deck spans, and at intermediate spacings not to exceed 10 feet. The 

American Institute of Timber Construction (AITC), however, recommends an intermediate 

stiffener beam spacing of 8 feet [ 1]. Stiffener design consists of sizing the beam so that the 

stiffness factor , 'EI', of the member is not less than 80,000 kips-square inch (k-in2); however, 

this is an approximate value that should not be significantly exceeded. Load distribution 

between panels is more effectively improved by decreasing stiffener beam spacing, rather 

than by increasing the beam size substantially above the required minimum [ 1]. 

Connections between the stiffener beam and the deck panels are placed 

approximately 6 inches from each panel edge. The type of connection depends on the 

stiffener-beam material and configuration. Through-bolting is used for glulam beams and 

steel channels. Deck brackets or steel plates are also used for glulam beams, and C-clips are 

used for steel I-beams. Research at ISU [10] indicates that the through-bolt type of 

connection provides more favorable load distribution in the panels and reduces the potential 

for localized stress conditions in the region of the connection to the stiffener beams. They are 
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also more effective in reducing inter-panel displacements that occur between stiffener beam 

locations. 

For longitudinal deck bridges, the required bearing length is normally controlled by 

considerations for bearing configuration, rather than stress in compression perpendicular to 

the grain. A bearing length of 10 to 12 inches is usually sufficient for stability and deck 

attachment. The bearing attachments are normally made through the deck to the supporting 

cap or sill, or from the deck underside. For short-span crossings, a side attachment using steel 

angles may also be feasible . 

Based on the bearing configuration, the dead load reactions are computed by 

conventional methods using the unit dead load of the panel. Live load reactions for single and 

multiple lane bridges are based on 'WLF ' from AASHTO 3.25.3 .2. The live load reaction 

distributed to each panel is the maximum reaction of the design vehicle times the 'WLF '. 

Applied stress in compression perpendicular to the grain reactions, 'fc-1. ', must not be greater 

than the allowable stress in compression perpendicular to the grain for the panel combination 

symbol , 'Fc-1. " : 

RLL = RwL (WLF) 
WLF = wp I 4, but not less than 1.0 
fc-1. = (RoL + RLL) I (wp lb).:::; Fc-1.' = Fc-1. CM 

where RLL = live load reaction on one panel, 
RwL = maximum reaction produced by one wheel line of design vehicle, 
RDL = dead load reaction on one panel, 
lb = length of bearing, 
Fc-1. = tabulated stress in compression perpendicular to the grain from [9] for 

particular combination symbol, and 
CM= wet-use factor for bearing = 0.53 [1]. 
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2.3 Analytical model of bridge 

2.3.1 Modeling of deck panels 

The deck panels are laid out longitudinally between the supports. The deck panels are 

non-interconnected and the assumption made in this regard is that the asphalt-wearing 

surface and friction between the adjacent panels contribute insignificantly towards continuity 

and load distribution between the panels. 

The four-node shell element (SHELL63) [ 11] was chosen to model the deck panel. 

The element chosen has six degrees of freedom at each node: translation in the nodal x, y, 

and z directions and rotations about the nodal x, y, and z-axes. This element can be used to 

model the orthotropic properties of wood and is defined by thickness, longitudinal and 

transverse moduli of elasticity, shear modulus and major or minor Poisson's ratio. The 

element permits both in-plane and lateral loads and has both bending and membrane 

capabilities. 

The longitudinal modulus of elasticity (parallel to the grain of fiber) of the panels is 

substantially higher than the transverse modulus of elasticity (perpendicular to the grain of 

fiber) and the modulus of elasticity tangential to the grain of fiber. Fig. 2.3 shows the 

SHELL63 element used to model the deck panels. 

2.3.2 Modeling the stiffener beams 

The stiffener beams provide lateral continuity to the deck panels. In some cases, they 

also provide for attachment of the railing system to the bridge. The two-node 3-D beam 

element (BEAM4) [I I] was chosen to model the stiffener beam. This element is a uniaxial 

freedom at each node: translation in the nodal x, y, and z directions, and rotations about the 
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Fig. 2.3 SHELL63 element used to model the deck panels [11]. 

element with tension, compression, torsion, and bending capabilities, and has six degrees of 

nodal x, y, and z-axes. The stiffener beams were assumed to be isotropic in bending. The 

beam element is defined by thickness, width, area, inertia about the y- and z-axes, 

longitudinal modulus of elasticity, shear modulus, and major or minor Poisson's ratio. Fig. 

2.4 shows the BEAM4 element used to model the stiffener beams. 
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Fig. 2.4 BEAM4 element used to model the stiffener beam and curbs [11]. 
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2.3.3 Modeling the connections 

The longitudinal glulam timber deck is connected to the transverse stiffener beams 

with through-bolt or aluminum bracket connections. Research at ISU [ 1 OJ has shown that the 

interpanel displacements are lesser when the stiffener beams are connected_to the deck with 

through-bolts. In the model , both these types of connections were treated as rigid 
. . ... ~. ~ 

connections. These connections were modeled using the 3-D beam element, BEAM4 (Fig. 
"-.., .... -

2.4), with flexural and axial stiffness equal to 100,000 kips per inch (very high value). 

2.3.4 Modeling the curbs 

The curbs were modeled using 3-D beam (BEAM4) elements. Fig. 2.4 illustrates the 
... 

orientations of the three axes. A consistent tangent stiffness matrix option is available for use 

in large deflection (finite rotation) analysis. Beam elements, with dimensions and 

longitudinal modulus of elasticity of the curbs, ran along either edge of the span of the bridge 

and were connected to the deck by rigid links. In modeling these rigid links, the deck nodes 

were assigned to be the master nodes and the curb nodes were assigned to be the slave nodes. 

The preprocessor gives the user the option to include curbs in the model. This option 

becomes very useful when a parametric study of the behavior of curbs on the bridge needs to 

be done. 

It should be noted that the dead load or the permanent weight of all the structural and 

non-structural components of the bridges, including the roadway, sidewalks, railing, and 

wearing surface, were not included in the load. Their contribution to the behavior of the deck 

bridge was assumed to be insignificant. 



www.manaraa.com

17 

2.3.5 Modeling the loads and abutment supports 

The bridge was assumed to be simply supported. This assumption was considered to 

be conservative because in reality, there may be some rotational fixity near the abutments . 

The live load applied was truck wheel loads. The wheel contact areas were assumed to be 

small relative to the bridge and hence, were applied as concentrated point loads. The dead 

loads of the deck, the wearing surface, curbs, and the railings were neglected. Field data were 

measured due to the effects of live loads only. The ANSYS software requires concentrated 

loads at nodes. The concentrated wheel loads were distributed to the nodes in the form of 

energy equivalent loads, since very rarely did the location of a wheel load correspond to the 

location of the panel node. 

In finite element analysis, nodal loads for an element are calculated using the energy 

approach that utilizes the same shape functions to develop the stiffness matrix of the 

particular element. If {N) is the vector containing the shape functions of an element, and 'P ' 

is the applied concentrated load on the element, the nodal load vector {[) is calculated as: 

{[)= (Nf P 

Since shape functions for the SHELL63 element were not explicitly stated in ANSYS 

[ 11], approximate shape functions by Desai [ 12] were used in the preprocessor to calculate 

the energy equivalent loads for a rectangular plate element. This approach was first used by 

Jain [ 13] in his preprocessor for stress laminated timber bridges. Desai developed the shape 

functions for a rectangular plate element with four nodes having three degrees of freedom at 

each node: translation in the z-direction and rotations about the x and y-axes . In the 

formulation discussed below, node 'I ' refers to the bottom left node of the rectangular 

element, node '2 ' refers to the bottom right node, node '3 ' refers to the upper right node, and 
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node '4' refers to the upper left node of the rectangular element. Refer to Fig. 2.5 for 

directions of the axes and the different degrees of freedom at each node. The rectangular 

element discussed below, is assumed to have a length of 'a ' in the x-direction and a width of 

'b ' in they-direction and the out-of-plane concentrated load 'P ' is assumed to be at a 

distance 'x' in the x-direction and y' in the y-direction, on the element, measured from the 

bottom left corner of the element. The equivalent nodal loads are given below: 

z 

For vertical loads, Fz: 
Nz(I) = nxl *nyl 
N2 (2) = nx2*nyl 
N2 (3) = nx2*ny2 
Nz(4) = nxl *ny2 

For moments, Mx: 
Nx(I) = nx3 *nyl 
N,t(2) = nx4*nyl 
N,t(3) = nx4*ny2 
Nx(4) = nx3 *ny2 

For moments, My: 
Ny(]) = nxl *ny3 
Ny(2) = nx2*ny3 
Ny(3) = nx2*ny4 
Ny(4) = nxl *ny4 

where nxl = 1 - 3s2 + 2s3 nyl = I - 3t2 + 2t3, 
nx2 = s2 (3 - 2s) ny2 = t2 (3 - 2t), 
nx3=as(s - I)2 nx3 = bt(t-I)2, 
nx4 = a s2 (s - 1) ny4 = b t2 (t - 1 ), 
s = x I a t = y/b, 

Nz(i) = interpolation function for force in z-direction of element at node 'i ', 
Nx(i) = interpolation function for moment about y-axis of element at node 'i ', 
Ny(i) = interpolation function for moment about x-axis of element at node 'i '. 

4 3 

b 
X _p 

1 IY 2 

8x cs, • • a 

X 

Fig. 2.5 Sign convention used by Desai [12] for his interpolation functions. 
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2.4 Mesh size determination 

A mesh sensitivity study was done on the analytical model of the bridge to determine 

the adequate size of the element to be used. The element size should be such that accurate 

results are obtained in minimum computer time. This element size depends on factors such as 

structure geometry, loading pattern, and boundary conditions and hence varies for each 

bridge; however, since the deck panel has a limited width range of 42 inches to 54 inches, it 

was decided to use a pre-determined element size in the preprocessor. This element size was 

determined from a mesh sensitivity study on a fictitious simply supported bridge (Fig. 2.6) 

with span-length of 26 feet. 

The bridge consisted of six deck panels, each panel being 4 feet wide, and 10.75 

inches thick. Three stiffener beams of cross-section 6.75 inches by 4.5 inches supported the 

deck panels underneath. The deck had a longitudinal modulus of elasticity of 2100 ksi, a 

transverse modulus of elasticity of 240 ksi , and a shear modulus of 106 ksi . The stiffener 

beams had a modulus of elasticity of 1625 ksi, and a shear modulus of 80 ksi. The bridge had 

curbs of size 8 inches by 8 inches on each edge. Two concentrated loads of 16 kips each were 

applied on the transverse centerline of the bridge at 108 inches from each edge of the bridge. 

The above values were chosen so that they closely represented an actual longitudinal glulam 

deck bridge. The aspect ratio was kept as close to unity as possible. 

The results of the analysis are shown in Fig. 2.7 and Table 2.1. It can be observed 

that when the element size was 18 inches by 12 inches, midspan panel edge deflections and 

maximum stiffener beam bending stresses started converging. As the field bridges may differ 

in dimension, the element size calculated by the program may differ slightly from the above 

mentioned element size. 
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Fig. 2.6 Plan layout of bridge used for mesh sensitivity analysis. 
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Fig. 2.7 Panel deflections at midspan for mesh sensitivity analysis. 
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Table 2.1 Maximum bending stresses for panel and stiffener beam at midspan. 

Element size 

36in.x24in. 

18in.x12in. 
9.6in.x6in. 

Maximum panel longitudinal stress (ksi) 

0.65 
0.69 
0.69 

Maximum stiffener beam 
bending stress (ksi) 

0.95 
0.98 
0.98 

2.5 Preprocessor and postprocessor for longitudinal glulam deck bridges 

These programs were developed using ANSYS Parametric Design Language (APDL) 

that is available inside the ANSYS software. The purpose of these programs was to reduce 

user input and provide required results in a more presentable format. The inputs required for 

the programs are: 1) basic dimensions of the bridge, 2) material properties of the deck, 

stiffener beams, and curbs (if provided), and 3) position and magnitude of the loads. 

These programs store the required output in a tabular format in a file called 

'Results. dat ', that is created in the home directory of the user. This output can then be 

imported into an Excel spreadsheet and the user can obtain a graphical representation of the 

results. The programs are capable of analyzing only single spans and the results obtained are 

along the midspan of the bridge. The output file contains midspan panel edge deflections, 

panel stresses (longitudinal, transverse, and shear) for user-selected panels, and midspan 

stiffener beam bending stresses. If a stiffener beam does not exist at midspan, then the 

bending stresses for the stiffener beam closest to midspan is listed in the output file. A listing 

of the program with comments is provided in Appendix A. A complete 'User Manual ' to the 

program with its limitations, and an example is provided in Appendix C. Fig. 2.8 shows the 

analytical model of a typical glulam deck bridge. 
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(a) Model of deck panel. 

beam 
(b) Model of stiffener beam. 

( c) Model of deck bridge. 

Fig. 2.8 Analytical model of a typical deck bridge with four panels and one stiffener 
beam. 
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3. COMPARISON OF EXPERIMENT AL AND ANALYTICAL DAT A FOR 

LONGITUDINAL DECK BRIDGES 

3.1 General 

Two case studies were analyzed with the model developed. The case studies were the 

Angelica Bridge in New York (NY), and the Bolivar Bridge in NY. These are both right

angled and short-span bridges. A parametric study was also performed for each bridge to 

determine the sensitivity of the results. This study was done by varying different input 

parameters suchl as material properties of the deck and stiffener beams, end restraint, stiffener 

beam cross-section dimension, and curb height. The above were first performed on the 

Angelica Bridge. Based on this study, the parametric study on the Bolivar Bridge was done 

only for parameters that had a significant effect on the results. 

3.2 The Angelica Bridge, NY 

3.2.1 Description 

The Angelica Bridge (Fig. 3 .1) is a two-lane, glulam deck bridge with eight panels, 

and four stiffener beams running transverse to the longitudinally placed deck panels. The 

stiffener beams are connected to the deck panels by through-bolt connections. The bridge 

deck is made of Douglas Fir timber. The deck panels are about 4.5 feet wide, 30 feet long, 

and 14.5 inches thick and are placed longitudinally between supports. These deck panels are 

not interconnected. The stiffener beams are connected to the deck panels by through-bolts at 

6 inches in from each edge of the panel. The bridge measured about 30 feet in span, 
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(a) End view of the Angelica Bridge showing the railing unit. 

(b) Elevation view of the Angelica Bridge. 

Fig. 3.1 The Angelica Bridge in NY. 
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measured center-to-center of bearings. The stiffener beams have a nominal width of 6. 75 

inches, and a nominal thickness of 4.25 inches. The bridge has deep curbs on its edges with a 

cross-section dimension of 8 inches by 21 .5 inches. The material properties for the analytical 

model were obtained from the Douglas Fir Handbook [14] for the particular grade of 

lamination used on the bridge. The deck panels have a longitudinal and transverse modulus 

of elasticity of 1700 kips-per-square inch (ksi) and 240 ksi, respectively. The shear modulus 

of the deck panels is about 100 ksi. The stiffener beams have a longitudinal modulus of 

elasticity of 1625 ksi. The shear modulus of the stiffener beams is about 80 ksi. Refer to Fig. 

3.2 for the design configuration of the bridge. 

Deck ----r------. 

~------ ------ ------ ------ ------ ------

Tra fie 
- · 

direction 6 ft 

- ~J--- ------ ------ ------ -

6 ft 

53.4 in 6 ft 
• • 

West 

i 
30 ft 
C to C 

brg. 

~-~--~--~-~~-~--~--~-~~ ''--~-
8 panels @ 53.4 in.= 35.6 ft 

Fig. 3.2 Plan layout of the Angelica Bridge. 
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3.2.2 Loading 

Six load tests were done on the bridge. The load test vehicles consisted of two fully 

loaded three-axle dump trucks with gross vehicle weights of 70,320 pounds (Truck 18) and 

75 ,940 pounds (Truck 12). The rear axles on Truck 18 weighed about 52,900 pounds while 

the rear axles on Truck 12 weighed about 55 ,540 pounds. The rear axles weighed about 75% 

of the respective gross vehicle weights. The vehicles were positioned longitudinally on the 

bridge so that the two rear axles were centered on the midspan of the bridge. Since this is a 

short-span bridge, the front axle of the trucks was outside the bridge for all load cases. The 

transverse vehicle track width, measured center-to-center of the rear tires, was 6 feet. For 

Load Cases 1 and 4, Truck 12 was placed on the east lane of the bridge, 24 inches and 104 

inches away from the longitudinal centerline of the bridge, respectively. For Load Cases 2 

and 5, Truck 18 was placed on the west lane of the bridge, 24 inches and 104 inches away 

from the longitudinal centerline of the bridge, respectively. Load Case 3 was a combination 

of Load Cases 1 and 2, while Load Case 6 was a combination of Load Cases 4 and 5. Fig. 3 .3 

shows the configuration of the trucks and the load positions on the bridge. 

3.2.3 Parametric study 

A parametric study on the Angelica Bridge was done for Load Cases 1 and 3. The input data 

described in Section 3.2.1 was used for the initial run on the program. The material properties 

of the deck were then varied and a comparative plot for panel edge deflections at midspan of 

bridge was made. Comparison was also done with respect to the experimental data from field 

tests. Similar deflection comparisons were made by individually changing the curb height, 

material properties of the stiffener beam, stiffener beam cross-section dimension, and end 
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Fig. 3.3 Configuration of trucks and load positions for various load cases. 
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restraint. The analytical model used for the study is shown in Fig. 3.4. Figs. 3.5 to 3.10 show 

the comparative plots for the full parametric study. 

A comparative study of experimental values and analytical results for midspan panel 

edge deflections was also done for all the other load cases. The deflection plots for this 

comparison are shown in Figs. 3.11 to 3.14. 

3.2.4 Comparison of maximum design stress and maximum stress from analysis 

The maximum design stress for the panels on the Angelica Bridge was computed 

using the procedure described in Section 2.2. The maximum longitudinal panel stress at 

midspan obtained using the program was 880 psi . The maximum design stress was equal to 

980 psi and was calculated with the following input into the design equations given in 

Section 2.2: 

WLF = 0.923 per panel 
M wL = l 993 in-kips 
MLL = 1840 in-kips 
MDL = 0 in-kips 

Wp = 53.4 in 
t = 14.5 in 
Sy= 1871 in3 

fi = 0.98 ksi = 980 psi 

From the stress comparison, it can be concluded that the finite element result 

compares well with the design stress computed from the design manual [ 1]. 

3.2.5 Results and discussion 

Figs. 3.5 to 3.10 illustrate the results of the parametric study performed on the 

Angelica Bridge for Load Cases 1 and 3. Upon varying the longitudinal modulus of elasticity 

of the panels from 1500 ksi to 1900 ksi , for Load Case 1, the maximum panel edge deflection 

decreased by about 15% (Fig. 3.5(a)), maximum midspan stiffener beam bending stress 

decreased by about 8%, and maximum panel bending stress increased by about 8% (Table 
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3.1). For Load Case 3, the maximum panel edge deflection decreased by about 15% (Fig. 

3.S(b)), maximum midspan stiffener beam bending stress decreased by 12%, and maximum 

panel bending stress increased by about 6% (Table 3 .1 ). Thus, the longitudinal modulus of 

elasticity of the panels has a significant effect on the deflection curve of the bridge. 

Deflection curves also showed a significant change near the edges of the bridge when the 

curb dimensions were varied. However, the effect of curbs was insignificant as we move 

towards the longitudinal centerline of the bridge. Upon varying the curb height from 0 to 21 

inches, for Load Cases 1 and 3, the outer panel edge deflection decreased by about 80% (Fig. 

3.6), but towards the center of the bridge, the difference was less than 5%. The stiffener beam 

bending stress towards the bridge edge increased by about 45% (Table 3.1), but the 

difference towards the center of the bridge was about 10%. The maximum panel bending 

stress decreased by about 7% with the addition of curbs (Table 3 .1 ). Hence, we can conclude 

that the curbs stiffen the edges of the bridge but do not have significant effect on the 

deflections or stresses towards the center of the bridge. 

The variation of transverse modulus of elasticity of the panels from 220 ksi to 260 ksi 

did not alter the deflections or stresses of the panels or stiffener beams significantly for both 

Load Cases (Fig. 3. 7, Table 3 .1 ). Upon varying the modulus of elasticity of the stiffener 

beams from 1450 ksi to 1800 ksi, the changes in the panel edge deflections were insignificant 

(Fig. 3.8), but the maximum stiffener beam bending stress increased by 20% for Load Case 

1, and 15% for Load Case 3 (Table 3 .1 ). The corresponding increase in stiffener beam 

bending stress, upon varying the stiffener beam cross-section (from 6.75in.x4.25in. to 

12in.x7.5in.), is 21 % for Load Case 1, and 20% for Load Case 3 (Table 3.1). When the 

supports of the bridge were changed from simple supports to fixed supports, the difference 
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between the deflection curves was significant (Fig. 3 .10). In reality, the bridge may have 

some rotational fixity at the abutments ; hence, the supports usually act between the simply 

supported and fixed end conditions. Since the experimental deflections, in general, were 

lesser than the analytical results , this may be due to some effect from the rotational restraints, 

if any, at the abutments or/and due to the assumed material properties in the model. 

Deflection curves for all the other load cases show that the analytical results are comparable 

with the experimental observations (Figs . 3 .11 to 3 .14 ). 

J\N ' 
Curb line------------. 

Deck 

beam 

Bridge 

Fig. 3.4 Analytical model of the Angelica Bridge. 



www.manaraa.com

31 

Distance (in.) 

0 50 100 150 200 250 300 350 400 450 

0 

-0. 1 t 6 ft t ~ -.s -0.2 
'-

c:: .s -0.3 ....., 
0 
<!) 

i;:::: -0.4 <!) 

Q 

-0.5 

-0.6 

(a) Load Case 1. 

Distance (in.) 
0 50 100 150 200 250 300 350 400 

0 

-0.1 n n -0.2 
,-. 

-0.3 .s 
'--

-0.4 c:: 
.s -0.5 ....., 
0 
<!) 

i;:::: -0.6 
<!) 

Q -0. 7 

-0.8 

-0. 9 

- I 
-+- E(long.)=1500 ksi E(long.)=1600 ksi 

E(long.)=1700 ksi E(long.)=1800 ksi 
~ E(long.)=1900 ksi -.- Experimental 

(b) Load Case 3. 

Fig. 3.5 Comparison of deck analytical and experimental deflection upon changing 
deck longitudinal modulus of elasticity for Load Cases 1 and 3. 
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Table 3.1 Maximum bending stresses at midspan for panel and stiffener beam (Angelica 

Bridge). 

Maximum stiffener beam Maximum panel stress 

Criteria 
stress (ksi) (ksi) 

Load Case 1 Load Case 3 Load Case 1 Load Case 3 

E=1500 ksi 1.17 1.14 

Longitudinal 
E= l600 ksi 1.15 1.10 

E=l 700 ksi 1.12 1.06 elasticity of panels 
E= l800 ksi 1.10 1.02 

E=1900 ksi 1.07 0.99 

No curbs (a) 0.62 0.76 

(b) 0.98 0.95 

8in.x5in.(a) 0.68 0.82 

(b) 1.01 0.96 

Curb height 
8in.x 1 0in.(a) 0.73 0.87 

(b) 1.05 0.97 

8in.xl5in.(a) 0.75 0.89 

(b) 1.07 0.98 

8in.x21in.(a) 0.90 1.02 

(b} 1.12 1.06 
E=220 ksi 1.12 1.05 

Transverse elasticity 
E=240 ksi 1.12 1.05 of panels 
E=260 ksi 1.12 1.07 

Elasticity of 
E= l450 ksi 1.02 0.96 
E=l625 ksi 1.12 1.06 stiffener beam 
E= l 800 ksi 1.22 1.16 

Stiffener beam 6. 75in.x4.25in. 1.12 1.06 
cross-section 12in.x8in. 0.86 1.08 

where (a) = region near the edge of the bridge, and 
(b) = region towards mid width of the bridge. 

0.53 0.86 

0.55 0.87 

0.56 0.88 
0.57 0.89 

0.57 0.90 

0.60 0.89 

0.60 0.89 

0.59 0.89 

0.58 0.88 

0.56 0.88 

0.56 0.88 

0.56 0.88 
0.56 0.88 

0.56 0.89 

0.56 0.88 

0.55 0.88 

0.56 0.88 

0.55 0.88 

Note: - The BOLD values in the criteria column are the properties assumed for the 
bridge for all loadcases. 
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3.3 The Bolivar Bridge, NY 

3.3.1 Description 

The Bolivar Bridge (Fig. 3.15) is a two-lane, glulam deck bridge with six panels and 

three stiffener beams running transverse to the longitudinally placed deck panels. The 

stiffener beams are connected to the deck panels by through-bolt connections. The bridge 

deck is made of Douglas Fir timber. The deck panels are about 4.3 feet wide, 28 feet long, 

and 14.56 inches thick and are placed longitudinally between supports. These deck panels are 

not interconnected. The stiffener beams are connected to the deck panels by through-bolts at 

6 inches in from each edge of the panel. The bridge measured about 28 feet in span, 

measured center-to-center of bearings. The stiffener beams have a nominal width of 6.75 

inches, and a nominal thickness of 4.625 inches. The bridge has deep curbs on its edges with 

a cross-section dimension of 8 inches by 21 .5 inches. The material properties for the 

analytical model were obtained from the Douglas Fir Handbook [9] for the particular grade 

of lamination used on the bridge. The deck panels have a longitudinal and transverse 

modulus of elasticity of 1416 kips-per-square inch (ksi) and 124 ksi respectively. The shear 

modulus of the deck panels is about 100 ksi. The stiffener beams have a longitudinal 

modulus of elasticity of 1625 ksi . The shear modulus of the stiffener beams is about 80 ksi . 

Refer to Fig. 3 .16 for the design configuration of the bridge. 

3.3.2 Loading 

Six load tests were done on the bridge. The load test vehicles consisted of two fully 

loaded three-axle dump trucks with gross vehicle weights of 71 ,980 pounds (Truck 12) and 

68,840 pounds (Truck 18). The rear axles on Truck 12 weighed about 53,980 pounds while 
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(a) Elevation view of the Bolivar Bridge. 

(b) End view of the Bolivar Bridge. 

Fig. 3.15 The Bolivar Bridge in NY. 
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the rear axles on Truck 18 weighed about 51 ,630 pounds. The rear axles weighed about 75% 

of the respective gross vehicle weights. The vehicles were positioned longitudinally on the 

bridge so that the two rear axles were centered on the midspan of the bridge. Since this is a 

short-span bridge, the front axle of the trucks was outside the bridge for all load cases. The 

transverse vehicle track width, measured center-to-center of the rear tires, was 6 feet. For 

Load Cases 1 and 4, Truck 12 was placed on the east lane of the bridge, 24 inches and 53 

inches away from the longitudinal centerline of the bridge, respectively. For Load Cases 2 

and 5, Truck 18 was placed on the west lane of the bridge, 24 inches and 53 inches away 

from the longitudinal centerline of the bridge, respectively. Load Case 3 was a combination 

of Load Cases 1 and 2, while Load Case 6 was a combination of Load Cases 4 and 5. Fig. 

3 .1 7 shows the configuration of the trucks and the load positions on the bridge. 

3.3.3 Parametric study 

A parametric study on the Bolivar Bridge was done for Load Cases 1 and 3. The input 

data described in Section 3 .2.1 was used for the initial run on the program. The material 

properties of the deck were then varied and a comparative plot for panel edge deflections at 

midspan of bridge was made. Comparison was also done with respect to the experimental 

data from field tests. Similar deflection comparisons were made by individually changing the 

curb height and end restraint. The analytical model of the bridge is shown in Fig. 3.18. Figs. 

3 .19 to 3 .21 show the comparative plots for the full parametric study. 

A comparative study of experimental values and analytical results for midspan panel 

edge deflections was also done for all the other load cases. The deflection plots for this 

comparison are shown in Figs. 3.22 to 3.25. A mesh sensitivity study was also done on the 
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analytical model of the bridge to determine the adequate size of the element to be used. 

3.3.4 Comparison of maximum design stress and maximum stress from analysis 

The maximum design stress for the panels on the Bolivar Bridge was computed using 

the procedure described in Section 2.2. The maximum longitudinal panel stress at midspan 

obtained using the program was 706 psi . The maximum design stress was equal to 850 psi 

and was calculated with the following input into the design equations given in Section 2.2 : 

WLF = 0.912 per panel 
M wL = 1698 in-kips 
MLL = 1548 in-kips 
MoL = 0 in-kips 

W p = 52 in 
t = 14.5 in 
Sy= 1822 in3 

fi = 0.85 ksi = 850 psi 

From the stress comparison, it can be concluded that the finite element result 

compares well with the design stress computed from the design manual [ 1]. 
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Fig. 3.17 Configuration of trucks and load positions for various load cases. 
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3.3.5 Results and discussion 

Figs. 3.19 to 3.21 illustrate the results of the parametric study performed on the 

Bolivar Bridge for Load Cases 1 and 3. Upon varying the longitudinal modulus of elasticity 

of the panels from 1300 ksi to 1700 ksi for Load Case 1, the maximum panel edge deflection 

decreased by about 15% (Fig. 3.19(a)), maximum midspan stiffener beam bending stress 

decreased by about 14%, and maximum panel bending stress increased by about 9% (Table 

3.2). For Load Case 3, the maximum panel edge deflection decreased by 17% (Fig. 3.19(b)), 

maximum midspan stiffener beam bending stress decreased by 16%, and maximum panel 

bending stress increased by about 9% (Table 3.2). The longitudinal modulus of elasticity of 

the panels is a significant parameter that influences the analytical behavior of the bridge. 

Upon varying the curb height from 0 to 21 inches for Load Cases 1 and 3, there was a 

significant decrease in the outer panel edge deflection (Fig. 3.19(a)). The stiffener beam 

bending stress towards the bridge edge increased by about 4 7% for both load cases (Table 

3 .2), but the difference towards the center of the bridge was about 15%. The maximum panel 

bending stress decreased by about 7% for Load Case 1, and about 15% for Load Case 3 

(Table 3.2), with the addition of curbs. Hence, we can conclude that the curbs play an 

important role in stiffening the edge of the bridge but they have an insignificant effect on the 

deflections or stresses towards the longitudinal centerline of the bridge. 

When the supports of the bridge were changed from simple supports to fixed 

supports, the difference between the deflection curves was significant (Fig. 3 .21 ). However, 

since the experimental deflections were, in general, higher than the analytical results, the 

effect of rotational fixity at the abutments can be assumed to be negligible. The differences 

between the analytical results and the experimental values may be because of assumed 
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material properties in the model or because of the way the connections between the deck and 

stiffener beams were modeled, or a combination of both factors. Deflection curves for all the 

other load cases show that the analytical results are comparable with the experimental 

observations (Figs. 3.22 to 3.25) . 
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Fig. 3.18 Analytical model of the Bolivar Bridge. 
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Table 3.2 Maximum bending stresses at midspan for panel and stiffener beam (Bolivar 

Bridge). 

Maximum stiffener beam Maximum panel stress 

Criteria stress (ksi) (ksi) 

Load Case 1 Load Case 3 Load Case 1 Load Case 3 

E=1300 ksi 0.77 1.31 0.45 0.67 

Longitudinal 
E=1400 ksi 0.75 1.25 0.46 0.69 

E=l500 ksi 0.73 1.20 0.47 0.71 elasticity of panels 
E= l600 ksi 0.69 1.15 0.48 0.72 

E= l 700 ksi 0.66 1.10 0.49 0.74 

No Curbs (a) 0.31 0.70 
0.50 0.83 

(b) 0.64 0.84 

8in.x5in. (a) 0.36 0.74 
0.49 0.81 

(b) 0.66 0.88 

Curb height 
8in.xl 0in. (a) 0.42 0.84 

0.49 0.79 
(b) 0.68 0.91 

8in.xl Sin. (a) 0.44 0.98 
0.48 0.74 

(b) 0.70 0.99 

8in.x21in. (a) 0.46 0.99 
0.47 0.71 

(b) 0.73 1.20 

where (a) = region near the edge of the bridge, and 
(b) = region towards the mid width of the bridge. 

Note : - The BOLD values in the criteria column are the properties assumed for the 
bridge for all loadcases. 
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4. GLUED LAMINATED GIRDER BRIDGES 

4.1 Description of girder bridges 

Glued laminated (glulam) bridges are the most common type of timber 

bridges. The spans of these bridges range from 20 to 100 feet. In this type of bridge, the deck 

panels are laid transverse to the girders that run between supports. The deck panels consist of 

a series of laminated lumbers that are placed on edge and glued together on their wide faces. 

The panels are normally about 4 feet in width and 5 to 7 inches in thickness. The girders are 

also glued laminated are usually 5 to 12 inches in width with depth to width ratios of 2 to 1 or 

greater. Lag bolts are used to connect the girders to the deck panels and this is responsible for 

the composite action between the deck and the girder. The bridge railing system consists of 

treated timber posts and a glued laminated rail , faced with a galvanized steel w-beam. The 

approach guardrail system us usually treated timber posts with galvanizes steel w-beam. A 

generic photo of a glued laminated girder bridge is shown in Fig. 4.1. Fig. 4.2 illustrates the 

configuration of a typical glulam girder bridge. 

The deck panels are manufactured of vertically laminated lumber and the loads act 

parallel to the wide face of the laminations. The two basic types of glulam decks are the non

interconnected deck and the doweled deck. Non-interconnected decks have no mechanical 

connection between adjacent panels. Doweled decks are interconnected with steel dowels to 

distribute the loads between adjacent panels. Both deck types are stronger and stiffer than 

conventional nail-laminated lumber or plank decks, resulting in longer deck spans, increased 

spacing of supporting girders, and reduced live load deflection. The glulam panels can also 
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(a) Single span glulam girder bridge. 

(b) Multi-span glulam girder bridge. 

Fig. 4.1 Generic photo of a glulam girder bridge. 
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be placed to provide a watertight deck, protecting the structure from the deteriorating effects 

of rain and snow. 

The glulam girders are horizontally laminated members designed from the bending 

combinations given in Table 1 of AITC 117 - Design [14]. The combinations provide the 

most efficient beam section where the primary loading is perpendicular to the wide face of 

the laminations. The quality and strength of outer laminations are varied for different 

combinations to provide a wide range of tabulated design values for positive and negative 

bending. Glulam girders offer substantial advantages over conventional sawn lumber girders 

because they are manufactured in larger sizes, and can be cambered to offset dead load 

deflection. 

4.2 Design procedures for girder bridges 

Non-interconnected glulam decks are the most widely used type of glulam deck in 

modern timber bridge construction. They are economical, require little fabrication, and are 

east to install with unskilled labor and without special equipment. Since the panels are not 

connected to one another, each panel acts individually to resist the stresses and deflection 

from applied loads. 

4.2.1 The non-interconnected glulam deck 

The deck is assumed to act as a simple span between girders and is designed for the 

stresses acting in the direction of the deck span and deflection. Stresses in the direction 

perpendicular to the span are not critical and are not considered in design. The basic design 

procedures for non-interconnected glulam decks are given in detail below [1]. The sequence 

assumes that the panels are initially designed for bending, then checked for deflection and 
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shear. Deflection rather than bending stress usually controls in most applications. The 

designer establishes the acceptable level of deflection and this may vary for different 

applications. 

The effective deck span, 's ', is the clear distance between the supporting girders plus 

one-half the width of one girder, but not greater than the clear span plus the panel thickness 

(AASHTO 3.25.1 .2). The panel width is a multiple of 1.5 inches, the net width of the 

individual lumber laminations. The designer should check local manufacturing and treating 

limitations before specifying widths over 48 inches. The deck design load is the maximum 

wheel load of the design vehicle. For H 20-44 and HS 20-44 loads, AASHTO special 

provisions for timber decks apply, and a 12,000-pound wheel load is used instead of a 

standard 16,000-pound wheel load. An initial estimate of the deck thickness is made based on 

bending and deflection considerations [ 1]. 

The wheel distribution widths in the direction of the deck span, 'bd ', and 

perpendicular to the deck span, 'b1 ', are compliant with AASHTO regulations (AASHTO 

3 .25 .1.1 ). The effective deck section, defined by a deck width, 'dw ', and thickness, 't ', is 

designed as a beam to resist the loads and deflection produced by one wheel line of the 

design vehicle. Uniform dead load moment for the effective deck section can be computed 

as : 

where MDL = deck dead load moment, 
w DL = dead load of the deck and wearing surface over wheel load 

distribution width, 'bd ', and 
s = effective deck span. 
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When a portion of the dead load is not uniformly distributed (as when the deck 

supports utility lines or other components), dead load moment from these non-uniform loads 

is computed by assuming the deck acts as a simple span, and the moment from the additional 

loading is added to 'Mal' computed above. 

The maximum vehicle live load moment, 'MLL ', is computed by assuming that the 

deck acts as a simple span between the girders. Wheel loads are positioned laterally on the 

span to produce the maximum moment. When deck panels are continuous over two spans or 

less, bending stress is based on simple span moments . When the deck is continuous over 

more than two spans, the maximum bending moment is 80 percent of that computed for a 

simple span to account for span continuity (AASHTO 3.25.4). 

Bending stress,fi, = MISy 

where M = (Mal+ MLL) for less than two spans, or, 
= 0.8(MDL + MLL) for more than two spans, and 

Sy= effective deck section modulus = dw t2!6. 

For the required bending stress, a panel combination symbol is selected from AITC 

117 [ 14]. The allowable bending stress, 'Fb · ', is given by the following formula: 

where Fby = tabulated bending stress from [ 14] , 
CF = size factor of panels less than 12 inches thick [ 1] , 
CM= moisture content factor for bending= 0.80 [1] . 

If Ii, :-s; Fb ·, the initial deck thickness and combination symbol is satisfactory in 

bending. When 'Ji,' is significantly lower than 'Fb · ', a thinner deck or lower grade 

combination symbol may be more economical; however, no changes should be made in panel 

thickness or combination symbol until the live load deflection is determined. Iffi, > Fb·, the 

deck is insufficient in bending and the deck thickness or grade must be increased, or the 
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effective deck span must be reduced. If either of these quantities is changed, the design 

sequence must be repeated. 

Live load deck deflection is computed by standard methods of engineering analysis, 

assuming the deck to be a simple span between girders . It should be noted that the modulus 

of elasticity must be multiplied by the moisture content factor, 'CM', before plugging into the 

equation for deflection. When the deck is continuous over more than two spans, the 

maximum deflection is 80 percent of that computed for a simple span to account for deck 

continuity. Since AASHTO does not specify the acceptable live load deflection limit, the 

limit is left to the designer's judgment. The deck deflection is important because it directly 

influences the performance and serviceability of the deck, wearing surface, and mechanical 

connections. When deflections are large, vertical movement of the panels causes vibrations in 

the structure and rotation of the deck panels about the girders . This can cause bolts to loosen 

and asphalt wearing surfaces to crack. 

Horizontal shear for dead load, 'VDL ', is based on the maximum vertical shear 

occurring at a distance from the support equal to the deck thickness, 't '. Live load vertical 

shear, 'VLL ', is computed by placing the edge of the wheel load distribution width, 'b1 ', a 

distance 't ' from the support. 

Horizontal shear stress,.fv = 1.5 V!Av 

where V= VDL + VLL, 
Av= t (15+2t) :s; t dw (square inches), and 
dw = panel width. 

Allowable shear stress, Fv , = Fvy CM 

where Fvy = tabulated shear stress from [14], and 
CM= moisture content factor for shear = 0.875 [1]. 



www.manaraa.com

60 

Finally, the deck overhang at exterior supports is checked using an effective span 

measured to the centerline of the outside girder, minus one-fourth the girder width. For 

vehicle live load stresses and deflection, the wheel load is positioned with the load centroid 1 

foot from the face of the railing or curb. The deck stress in bending and horizontal shear must 

be within allowable limits as mentioned in the preceding paragraphs. 

4.2.2 The glulam girder 

The girders are the principal load-carrying components of the bridge superstructure. 

They must be proportioned to resist the applied loads and meet the serviceability 

requirements for deflection. The total beam system consists of beams, bearings and, in some 

cases, transverse bracings. Since the bridges in this report do not have transverse bracings, no 

further mention of these bracings will be made in this report. The basic design procedures for 

the glulam girders are summarized below. 

At this point, the span length, 'L ', measured center-to-center of bearings, the roadway 

width measured face-to-face of curbs (AASHTO 2.1.2), the number of traffic lanes, the 

number and spacing of girders, the design load vehicles, and the deck and curb configuration, 

are assumed to be known to the designer. An initial beam combination symbol is selected 

from [ 14]. The deck dead load supported by each girder is computed and the dead load 

moments are calculated assuming the girders to be simply supported at its ends. The live load 

moments are computed for interior and exterior girders by multiplying the maximum moment 

for one wheel line of the design vehicle by the applicable moment distribution factors given 

in [ 1]. 
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The initial girder size is estimated based on the deck dead load moment and vehicle 

live load moment, assuming the size factor , 'CF', controls allowable bending stress. The 

girder dead load moment is unknown at this point. 

where Sx CF= required girder section modulus adjusted by size factor, 
M = applied dead load and live load bending moment, 

Fb' = allowable bending stress= Fbx CM, 
Fbx = Tabulated bending stress value from [14] for particular combination 

symbol, and 
CM= moisture content factor for bending = 0.80 [1]. 

An interactive chart in [1] allows the designer to obtain the required girder depth for 

the selected 'S, CF ' value. Girder design usually favors a relatively narrow, deep section with 

a depth to width of ratio of 4: 1 and 6: 1. The beam dead load moment is computed for the 

chosen beam size and added to the deck load and live load moments . A revised beam size is 

selected and this interactive process is continued until a satisfactory girder section is 

obtained. Applied bending stress is then computed for the member: 

Girder size based on bending stress must be checked for lateral stability. If stability 

controls over size factor, it is generally more economical to reduce unsupported girder length 

by providing bracings. If this is not practical, the girder must be redesigned for the lower 

stress required for stability. 

Live load deflections are computed from standard methods of engineering analysis. 

The distribution of deflection to bridge girders depends on the transverse deck stiffness. On 

single lane bridges with glulam decks, the deflection produced by one vehicle (two wheel 

lines) is assumed to be resisted equally by all the girders. On multi-lane bridges, deflection 
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can be distributed using the distribution factor (DF) for girder moment [1] , or by assuming 

that all girders equally resist the deflection produced by the simultaneous loading of one 

vehicle in each traffic lane. Criteria for maximum deflection are based on designer judgment, 

but should not exceed L/360. 

Dead load horizontal shear, 'VDL ', is based on the maximum vertical shear occurring a 

distance from the support equal to the girder depth, 'd '. Live load vertical shear, 'VLL ', is 

computed at the lesser distance of '3d ' or L/4. Applied horizontal shear stress, '.fv ', must not 

be greater than the allowable stress, 'Fv ', as given by: 

where V = Val+ vll, 
A = girder cross-section area, 

Fvx = tabulated shear stress value from (14], and 
CM = moisture content factor for shear = 0.875 (1]. 

Whenfv ~ Fv ·, the girder is adequately proportioned for horizontal shear. If fv > Fv ·, 

the girder is insufficient in shear and the cross-sectional area must be increased. Bearing area 

at girder reactions must be sufficient to limit stress to an allowable level. The total dead load 

reaction, 'RDL ', at each girder is computed. The live load reaction, 'RLL ', at each girder is 

computed by multiplying the maximum reaction for one wheel line by the applicable 

distribution factor for reactions [ 1] . 

Required bearing length = (RDL + RLL)/(b FcJ. ) 
Applied bearing stress = (RaL + RLL)/ A ~ FcJ. · 
where FcJ., = Allowable compressive stress perpendicular to the grain = Fc_1.x CM, 

F c-1.x = Tabulated compressive stress perpendicular to the grain [ 14], and 
CM = Moisture content factor for bearing = 0.53 [1]. 

A = Bearing area. 

The camber is based on span length and girder configuration. For girders with spans 

greater than 50 feet, camber is generally 1.5 to 2.0 times the computed dead load deflection. 
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For spans less than 50 feet, camber is 1.5 to 2.0 times the dead load deflection plus one-half 

the vehicle live load deflection. Camber for single beams is specified as a vertical offset at 

the girder centerline. On multiple-span continuous girders, camber may vary along the girder 

and should be specified at the center of each span segment. Finally, the bearing shoe, bearing 

pad, girder to deck attachment bolts, and anchorage system is designed. 

4.3 Analytical model of bridge 

The ANSYS software [8] was used to describe the bridge behavior analytically 

because of its vast element library and powerful analysis techniques . The model was 

assembled by modeling the deck panels , girders, and curbs, if present. The panels and girders 

were modeled using quadrilateral, elastic, and orthotropic shell elements. The curbs were 

modeled with 3-D elastic beam elements connected to the deck by rigid links. All these 

elements are present in the ANSYS element library. 

4.3.1 Modeling the deck panels 

The deck panels are laid out transverse to the girders. The deck panels are non

interconnected and the assumption made in this regard is that the asphalt-wearing surface and 

friction between the adjacent panels contribute insignificantly towards continuity and load 

distribution between the panels. 

The four-node shell element (SHELL63) [11] was chosen to model the deck panel. 

This element has already been described in Sec. 2.3 .1. This element can be used to model the 

orthotropic properties of wood and is defined by thickness, longitudinal and transverse 

moduli of elasticity, shear modulus and major or minor Poisson ' s ratio. Fig. 2.2 shows the 

SHELL63 element used to model the deck panels. 
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4.3.2 Modeling the girders 

The girders were also modeled with SHELL63 (Fig. 2.2) elements. The depth of the 

girder was divided into shell elements and the thickness of the shell elements was the width 

of the girder. Nodes were located at the bottom ,gf the girders for provision_ qf supports. 
--- .... _, ·'•· _., ..... ~ ........ ~~· . ...,.., • ., . • - ~,. .. ~. • ~.--,✓• 

B~~,sear.£h..L5],.showed_tl}a,t th~ girder and dee~ could be assumed to be fully comp_?site 

with each other. Hence, in the model, the full composite action was idealized by making the ___ .........__ ____ 
connecting nodes between the deck panels and the girders common nodes. 
~ ~-,,,,..,~"'" ... ~ .~.-~A••·••· .. ~-•''"'"'"" '"'<II.-...,... • ••• ... ........,, ... , <.::,.~ • •-~ 

4.3.3 Modeling the curbs 

The curbs were modeled using 3-D beam (BEAM4) (Fig. 2.3) elements. This two

node element has already been discussed in Sec. 2.3.2 and Sec. 2.3.4. The preprocessor gives 

the user the option to include curbs in the model. This option becomes very useful when a 

parametric study of the behavior of curbs on the bridge needs to be done. 

It should be noted that the dead load or the permanent weight of all the structural and 

non-structural components of the bridges, including the roadway, sidewalks, railing, and 

wearing surface, were not included in the load. Their contribution to the behavior of the 

girder bridge was assumed to be insignificant. 

4.3.4 Modeling the loads and abutment supports 

The bridge was assumed to be simply supported since this assumption would be 

closer to the real situation and deflection and stress results would be conservative. The live 

load applied was truck wheel loads. The dead loads of the deck, the wearing surface, curbs, 

and the railings were neglected. Field data were measured under the effects of live loads 

only. The concentrated load (user input) is applied as a pressure load on the element upon 
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which the load falls with a pressure value equal to the value of the concentrated load divided 

by the area of the element. In a situation where the concentrated load fell on a node of an 

element, the load was applied as a pressure on the closest surrounding element ( chosen by 

smaller element number). 

4.4 Preprocessor and postprocessor for glulam girder bridges 

These programs were developed using ANSYS Parametric Design Language (APDL) 

that is available inside the ANSYS software. The purpose of these programs was to reduce 

user input and provided required results in a more presentable format. The inputs required for 

the programs are : 1) basic dimensions of the bridge, 2) material properties of the deck, 

girders, and curbs (if provided), 3) position and magnitude of the loads. The user is also 

given an option to choose an element size to mesh the deck and the girders. This option was 

exercised in a mesh sensitivity study for the three case studies analyzed in the next chapter. 

These programs store the required output in a tabular format in a filed called 

'Results. dat ', that is created in the home directory of the user. This output can then be 

imported into an Excel spreadsheet and the user can obtain a graphical representation of the 

results. The programs are capable of analyzing only single spans and the results extracted are 

along the midspan of the bridge (along the skew centerline for the skew bridges). The output 

file contains midspan girder deflections and midspan girder stresses. A listing of the program 

with comments is provided in Appendix B. A complete 'User Manual ' to the program with 

an example is provided in Appendix C. Fig. 4.3 shows the analytical model of a typical 

glulam girder bridge. 
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(a) Model of a deck panel. 

Deck--

- - -----

(b) Model of a girder. 

Deck 

Girder 

( c) Model of girder bridge. 

Fig. 4.3 Analytical model of a typical girder bridge with four girders. 
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5. COMPARISON OF EXPERIMENTAL AND ANALYTICAL DAT A FOR 

GIRDER BRIDGES 

5.1 General 

Four case studies were undertaken to test the model developed. The case studies were 

the Cow Gulch Bridge in Montana, the Wittson Bridge in Alabama, the Chambers County 

Bridge in Auburn, and the Hibbard Creek Bridge in Montana. The first three bridges are 

right-angled bridges and the fourth one is a skew bridge with a skew of 30 degrees, left end 

ahead. 

A parametric study was also performed for each bridge to determine the sensitivity of 

the results. This study was done by varying different input parameters such as material 

properties of the deck and girders, end restraint, and curb height. The above were first 

performed on the Cow Gulch Bridge in Montana. Based on this study, the parametric study 

on the other bridges was done only for parameters that had a significant effect on the results. 

5.2 The Cow Gulch Bridge, Montana 

5.2.1 Description 

The Cow Gulch Bridge (Fig. 5 .1) is owned by Yellowstone County in Montana and 

was built from a grant received by the county from the 'Wood in Transportation Program ' in 

1996 . The focus of the grant was to construct economical timber bridges, and to encourage 

involvement by a local timber laminating facility. The bridge is made of Coast 
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(a) Elevation view of the Cow Gulch Bridge. 

(b) End view of the Cow Gulch Bridge showing the railing system. 

Fig. 5.1 The Cow Gulch Bridge in Montana. 
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Douglas Fir Grade 2, with six girders supporting the deck panels. The deck panels are about 

4 feet wide, 28 feet long, and 5 .125 inches thick and are laid transversely on the girders. 

They are connected to the girders by lag bolts at 6 inches in from each edge of the panel. The 

bridge measured 40 feet in span, measured center-to-center of bearings. The girders have a 

nominal width of 8.75 inches, and a nominal thickness of 28.5 inches. The curbs on the 

bridge have a cross-section dimension of 8 inches by 8 inches. The material properties for the 

analytical model were obtained from the Douglas Fir Handbook [9] for the particular grade 

of lamination used on bridge. The deck panels have a longitudinal and transverse modulus of 

elasticity of 1800 kips-per-square inch (ksi) and 130 ksi respectively. The shear modulus of 

the deck panels is about 100 ksi. The girders have a longitudinal and transverse modulus of 

elasticity of 2000 ksi and 240 ksi respectively. The shear modulus of the girders is about 106 

ksi . Refer to Fig. 5.2 for the design configuration of the bridge. 
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5.2.2 Loading 

Six load tests were done on this bridge. The load test vehicles consisted of two fully 

loaded three-axle dump trucks with gross vehicle weights of 50,920 pounds (Truck 1) and 

50,080 pounds (Truck 2). The rear axles on Truck 1 weighed about 36,820 pounds while the 

rear axles on Truck 2 weighed about 36,000 pounds. The rear axles weighed about 75% of 

the respective gross vehicle weights. The vehicles were positioned longitudinally on the 

bridge so that the two rear axles were centered at midspan of the bridge. The transverse 

vehicle track width, measured center-to-center of the rear tires, was 6 feet. For Load Case 1, 

Truck 1 was placed on the east lane of the bridge, 2 feet away from the longitudinal 

centerline of the bridge. For Load Case 2, Truck 2 was placed on the west lane of the bridge, 

2 feet away from the longitudinal centerline of the bridge. For Load Case 4, Truck 1 was 

placed 28 inches from the east edge of the bridge while for Load Case 5, Truck 2 was placed 

28 inches from the west edge of the bridge. Load Case 3 was a combination of Load Cases 1 

and 2, while Load Case 6 was a combination of Load Cases 4 and 5. Fig. 5.3 shows the 

configuration of the trucks and the load positions on the bridge. 

5.2.3 Parametric study 

A parametric study on the Cow Gulch Bridge was done for Load Cases 1 and 3. The 

input data described in Section 5 .2.1 was used to make an initial run on the program. The 

longitudinal modulus of elasticity of the girders was then varied and a comparative plot for 

girder deflections at midspan of bridge was made. Comparison was also done with respect to 

the experimental data from field tests. Similar deflection comparisons were made by 
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Fig. 5.3 Configuration of trucks and load positions for various load cases. 
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individually changing the height of the curbs, material properties of the deck, and end 

restraint. Figs. 5.4 to 5.12 show the comparative plots for the full parametric study. The 

analytical model of Cow Gulch Bridge is shown in Fig. 5.49. A comparative study of 

experimental values and analytical results for midspan girder deflections was also done for 

all the other load cases . The deflection plots for this comparison are shown in Figs. 5 .13 to 

5.16. A mesh sensitivity study was also done on the analytical model of the bridge to 

determine the adequate size of the element to be used. The element size should be small 

enough to yield reasonable results yet large enough to minimize computer time. 

5.2.4 Comparison of maximum design stress and maximum stress from analysis 

The maximum design stress for the girders on the Cow Gulch Bridge was computed 

using the procedure described in Section 4.2 .2. The maximum girder bending stress at 

midspan obtained using the program was 1,250 psi. The maximum design stress was equal to 

1,560 psi and was calculated with the following input: 

DF = 0.96 wheel-lines per girder 
M wL = 1926 in-kips 
Mu = 1849 in-kips 
MDL = 0 in-kips 

Width of girder = 8.75 in 
Depth of girder = 28 .5 in 
Sx = 1185 in3 

/b = 1.56 ksi = 1,560 psi 

From the stress comparison, it can be concluded that the finite element result 

compares well with the design stress computed from the design manual [ 1]. 

5.2.5 Results and discussion 

Figs. 5.4 to 5.12 illustrate the results from the parametric study performed on the Cow 

Gulch Bridge for Load Cases 1 and 3. Upon varying the longitudinal modulus of elasticity of 

the girders from 1800 ksi to 2200 ksi , maximum deflections in the girders reduced by about 
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13% and maximum stresses in the girders increased by about 5% for both Load Cases 1 and 

3 (Figs. 5.4 and 5.5). Thus, longitudinal modulus of elasticity may be a significant parameter 

influencing the deflection curve of the bridge. Deflection and stress curves also showed a 

significant change near the edges of the bridge when the curb dimensions were varied (Figs. 

5.6 and 5.7). However, the changes towards the center of the bridge were minimal; thus, we 

can conclude that the effect of curbs is restricted to regions near the edge of the bridge. Upon 

varying curb height from O to 8 inches, maximum deflections and stresses in the exterior 

girders decreased by 10% for both load cases. 

Differences in maximum deflections and stresses in the girders were less than 5% 

when the longitudinal and transverse modulus of elasticity of the deck was altered (Figs. 5.8 

to 5.11). These differences may be assumed to be negligible and hence, it can be safely 

assumed that variation in deck material properties do not affect bridge performance 

significantly. When the supports of the bridge were changed from simple supports to fixed 

supports, the difference between the deflection curves was significant (Fig. 5.12). In reality, 

the supports usually act between the simply supported and fixed end conditions. Since the 

experimental deflections, in general, were lesser than the analytical results, this may be due 

to some effect from the rotational restraints, if any, at the abutments or/and due to the 

assumed material properties in the model. Deflection curves for all the other load cases show 

that the analytical results are comparable with the experimental observations (Figs. 5 .13 to 

5.16). A mesh sensitivity analysis for the Cow Gulch Bridge (using Load Case 1 as the load 

for the sensitivity study) indicated that when the element size was 12 inches by 12 inches, the 

deflection and stress results reached convergence (Fig. 5.17). The aspect ratio was kept close 

to unity for the mesh sensitivity study. 
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Fig. 5.4 Comparison of girder deflections at midspan upon changing longitudinal 
modulus of elasticity of the girders for Load Cases 1 and 3. 
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Fig. 5.5 Comparison of analytical girder bending stresses at midspan upon changing 
longitudinal modulus of elasticity of the girders for Load Cases 1 and 3. 
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Fig. 5.6 Comparison of girder deflections at midspan upon varying curb height for 
Load Cases 1 and 3. 
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Fig. 5. 7 Comparison of analytical girder bending stresses at midspan upon varying 
curb height for Load Cases 1 and 3. 
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Fig. 5.8 Comparison of girder deflections at midspan upon changing longitudinal 
modulus of elasticity of the deck for Load Cases 1 and 3. 
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Fig. 5.9 Comparison of analytical girder bending stresses at midspan upon changing 
longitudinal modulus of elasticity of the deck for Load Cases 1 and 3. 



www.manaraa.com

0.1 

,-- -0.1 .s -c:: .s -0.2 
...... 
(.) 

0 50 100 

(1.) 

~ 
(1.) 

Q 
-0.3 - ~ • E(tr~s.)=120 ksi 1 

E(trans.)=130 ksi 1 

-O 4 --f:'r- E(trans.)=140 ksi 
~ Experimental 

-0 5 

0 

-0~ I 
-0.2 

,-- -0.3 
.s - -0.4 c:: 
.s 
0 -0 .5 
(1.) 

~ -0.6 
Q 

-0.7 

-0.8 

-0 .9 

50 100 

t 
6 ft 

80 

Distance (in.) 

150 200 250 300 

t 6 ft t 

(a) Load Case 1. 

Distance (in.) 

150 200 250 300 

t t 6 ft t 

____ ./ 

-+- E(trans.)=120 ksi E(trans.)=130 ksi 

E(trans.)=140 ksi ~ Experimental 

(b) Load Case 3. 

350 

__j 

350 

Fig. 5.10 Comparison of girder deflections at midspan upon changing transverse 
modulus of elasticity of the deck for Load Cases 1 and 3. 
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5.3 The Wittson Bridge - Span 3, Alabama 

5.3 Description 

The Wittson Bridge is a single lane bridge consisting of four simple spans : 51.3 feet 

at Span 1, 51.3 feet at Span 2, 102 feet at Span 3, and 35 feet at Span 4 (all measurements 

made from center-to-center of bearings). A photo of the bridge appears in Fig. 5.18. 

Although the ends of the stringers of adjacent spans were separated by a 1.5 to 3 inch gap, 

the deck panels overlapped from one span to another, creating possible rotational continuity. 

The first and third spans (Span 1 and Span 3) were tested for midspan girder deflections 

using static trucks as live load cases. This report, however, deals with only Span 3 of the 

bridge. The bridge is made of Southern Yell ow Pine with four girders spaced at 51 inches on 

center, supporting the deck. The deck panels are about 4 feet wide, 15 feet long, and 5.125 

inches thick. These panels are connected to the girders by lag screws at 6 inches in from each 

edge of the panel. 

The girders have a nominal width of 10.625 inches and a nominal thickness of 63.25 

inches. Steel guardrail on timber posts are installed on both sides of the bridge. The material 

properties for the analytical model were obtained from the AITC-117 Design Manual [9] for 

the particular grade of lamination used on bridge. The deck panels have a longitudinal and 

transverse modulus of elasticity of 1930 ksi and 240 ksi , respectively. The shear modulus of 

the deck panels is about 106 ksi. The girders have a longitudinal and transverse modulus of 

elasticity of 1930 ksi and 240 ksi, respectively. The shear modulus of the girders is about 106 

ksi. Refer to Fig. 5 .19 for the design configuration of the bridge. 
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(a) Elevation view of the Wittson Bridge. 

(b) End view of the Wittson Bridge showing the girders. 

Fig. 5.18 The Wittson (Tuscaloosa) Bridge in Alab~ma. 
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Fig. 5.19 Plan layout of the Wittson Bridge - Span 3. 

5.3.2 Loading 

North 

102 ft 
C to C 

brg. 

t 

Three load tests were done on this bridge. The load test vehicle consisted of a fully 

loaded three-axle dump truck with a gross vehicle weight of 55 ,400 pounds (Truck 1 ). The 

rear axles on Truck 1 weighed about 38,540 pounds. The rear axles weighed about 70% of 

the gross vehicle weight. The vehicles were positioned longitudinally on the bridge so that 

the centerline of the three axles was at midspan of the bridge. The transverse vehicle track 

width, measured center-to-center of the rear tires, was 6 feet. For Load Case 1, the 

longitudinal centerline of the truck coincided with the longitudinal centerline of the bridge. 

For Load Case 2, the longitudinal centerline of the truck was 3 feet east of the longitudinal 

centerline of the bridge. For Load Case 3, the longitudinal centerline of the truck was 3 feet 
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west of the longitudinal centerline of the bridge. Fig. 5.20 shows the configuration of the 

truck and the load positions on the bridge. 

5.3.3 Parametric study 

A parametric study on the Wittson Bridge was done for Load Case 1. The input data 

described in Section 5.3.1 was used to make an initial run on the program. The longitudinal 

modulus of elasticity of the girders was then varied and a comparative plot for girder 

deflections at midspan of bridge was made. Comparison was also done with respect to the 

experimental data from field tests. Similar deflection comparison was made by changing the 

end restraint. Figs. 5.24 and 5.25 show the comparative plots for the full parametric study. 

16,860 lbs 19,270 lbs 19,270 lbs 

Truck 1 
Axles 

+ ____ ~i~+ 
16.16ft 4.42 ft .. 1 

Note: Truck width= 6 ft 

North 

Centerline 
I 

I I Truck 1 I 
Load Case 1 ~---------•-----~•--------~ 

I 

I I Truck 1 I 
Load Case 2 ._ ___________ f....._ ____ _,T _____ _ 

I 

I 

Load Case 3 ~I ______ i __ T_ru_c_k_l _ _,+-----------~ 
Fig. 5.20 Configuration of trucks and load positions for various load cases. 

t 
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A comparative study of experimental values and analytical results for midspan girder 

deflections was also done for all the other load cases. The deflection plots for this 

comparison are shown in Figs. 5.26 and 5.27. A mesh sensitivity study was also done on the 

analytical model of the bridge to determine the adequate size of the element to be used. The 

analytical model of the Wittson County Bridge - Span 3 is shown in Fig. 5.50. 

5.3.4 Comparison of maximum design stress and maximum stress from analysis 

The maximum design stress for the girders on the Wittson Bridge - Span 3 was 

computed using the procedure described in Section 4.2.2. The maximum girder bending 

stress at midspan obtained using the program was 600 psi. The maximum design stress was 

equal to 697 psi and was calculated with the following input: 

DF = 0.7 wheel-lines per girder 
M wL = 7030.4 in-kips 
MLL = 4921 in-kips 
MDL = 0 in-kips 

Width of girder = 10.625 in 
Depth of girder = 63 .125 in 
Sx = 7056 in3 

/b = 0.697 ksi = 697 psi 

From the stress comparison, it can be concluded that the finite element result 

compares well with the design stress computed from the design manual [ 1]. 

5.3.5 Results and discussion 

Figs. 5 .21 and 5 .22 illustrate the results from the parametric study performed on the 

Wittson Bridge - Span 3, for Load Case 1. Upon varying the longitudinal modulus of 

elasticity of the girders from 1730 ksi to 213 0 ksi , maximum deflections in the girders 

reduced by about 17% but there was no significant increase in the maximum stresses in the 

girders (Fig. 5 .21 ). The longitudinal modulus of elasticity is a significant parameter 

influencing the deflection curve of the bridge. 



www.manaraa.com

0 20 

0 

-0.2 
,,--. 

C: -0.4 .,..., 
'---' 

C: 
0 -0.6 .,..., ...... 
u 
11) 

I+:: -0.8 -11) 

Cl 
- I • 

-1.2 

-1.4 

0 20 

0.41 

0.42 

0.43 

~ 0.44 
~ 
'--' 

VJ 0.45 
VJ 
11) ,_ 
...... 0.46 VJ 

0.47 -

0.48 

0.49 

40 

91 

Distance (in.) 

60 80 

1 
---+- E= l 730 ksi 
--is-- E=1930 ksi 
~ E=2130 ksi 

100 120 140 

6 ft 

i 
------------ E= 1830 ksi 

E=2030 ksi 
--+--- Experimental 

160 

--------(\-------==--£:, - fr 

: 
,__ ______ _ .. • • 

(a) Girder deflections at midspan. 

Distance (in.) 

180 

40 60 80 100 120 140 160 180 
_,[ _____L 

t 6 ft t 
~ E 1730ksi 

E=l 830 ksi 
--ir- E= 1930 ksi 

E=2030 ksi 
~ E=2130 ksi 

(b) Girder bending stresses at midspan. 

Fig. 5.21 Comparison of girder deflections and bending stresses at midspan upon 
changing longitudinal modulus of elasticity of the girders for Load Case 1. 
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When the supports of the bridge were changed from simple supports to fixed 

supports, the difference between the deflection curves was significant (Fig. 5.22). Since the 

experimental deflections, in general, were lesser than the analytical results, this may be due 

to some effect from the rotational restraints, if any, at the abutments or/and due to the 

assumed material properties in the model. Deflection curves for all the other load cases show 

that the analytical results are comparable with the experimental observations (Figs. 5 .23 and 

5.24). A mesh sensitivity analysis for the Wittson Bridge - Span 3 (using Load Case I as the 

load for the sensitivity study) indicated that when the element size was 12.25 inches by 12.25 

inches, the deflection and stress results reached convergence (Fig. 5.25). The aspect ratio was 

fixed close to unity for the mesh sensitivity study. 
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Fig. 5.25 Comparison of girder deflections and bending stresses at midspan for mesh 
sensitivity analysis of the Tuscaloosa Bridge - Span 3. 
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5.4 The Chambers County Bridge, Auburn 

5.4 Description 

The Chambers County Bridge is a 51. 5 feet ( center-to-center of bearings) long, single 

span, two-lane bridge. A photo of the bridge appears in Fig. 5.26. The bridge is made of 

Southern Yellow Pine with six girders spaced at 60 inches on center, supporting the deck. 

The deck panels are about 4 feet wide, 27 feet long, and 5 .125 inches thick. These panels are 

connected to the girders by lag screws at 6 inches from each edge of the panel. 

The girders have a nominal width of 8.75 inches and a nominal thickness of 43 

inches. Steel guardrail on timber posts are installed on both sides of the bridge. The material 

properties for the analytical model were obtained from the AITC-117 Design Manual [1 OJ for 

the particular grade of lamination used on bridge. The deck panels have a longitudinal and 

transverse modulus of elasticity of 1930 ksi and 240 ksi , respectively. The shear modulus of 

the deck panels is about 106 ksi. The girders have a longitudinal and transverse modulus of 

elasticity of 1930 ksi and 240 ksi, respectively. The shear modulus of the girders is about 106 

ksi . Refer to Fig. 5.27 for the design configuration of the bridge. 

5.4.2 Loading 

Six load tests were done on this bridge. The load test vehicles consisted of two fully 

loaded three-axle dump trucks with gross vehicle weights of 59,340 pounds (Truck 1) and 

63 ,880 pounds (Truck 2). The rear axles on Truck 1 weighed about 45 ,240 pounds while the 

rear axles on Truck 2 weighed about 49,600 pounds. The rear axles weighed about 75% of 

the respective gross vehicle weights. The vehicles were positioned longitudinally on 

the bridge so that the centerline of the three axles was centered at midspan of the bridge. The 
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(a) Elevation view of the Chambers County Bridge. 

(b) End view of the Chambers County Bridge showing the girders. 

Fig. 5.26 The Chambers County Bridge in Auburn. 
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transverse vehicle track width, measured center-to-center of the rear tires, was 6 feet. For 

Load Case 1, Truck 1 was placed on the east lane of the bridge, 2 feet away from the 

longitudinal centerline of the bridge. For Load Case 3, Truck 2 was placed on the west lane 

of the bridge, 2 feet away from the longitudinal centerline of the bridge. For Load Case 4, 

Truck 1 was placed 27 inches from the east edge of the bridge while for Load Case 6, Truck 

2 was placed 27 inches from the west edge of the bridge. Load Case 2 was a combination of 

Load Cases 1 and 3, while Load Case 5 was a combination of Load Cases 4 and 6. Fig. 5.31 

shows the configuration of the trucks and the load positions on the bridge. 
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5.4.3 Parametric study 

A parametric study on the Chambers County Bridge was done for Load Cases 1 and 

2. The input data described in Section 5 .4.1 was used to make an initial run on the program. 

The longitudinal modulus of elasticity of the girders was then varied and a comparative plot 

for girder deflections at midspan of bridge was made. Comparison was also done with 

respect to the experimental data from field tests . Similar deflection comparison was made by 

changing the end restraint. Figs. 5.29 to 5.31 show the comparative plots for the full 

parametric study. 

A comparative study of experimental values and analytical results for midspan girder 

deflections was also done for all the other load cases. The deflection plots for this 

comparison are shown in Figs. 5.32 to 5.35. A mesh sensitivity study was also done on the 

analytical model of the bridge to determine the adequate size of the element to be used. The 

analytical model of the Chambers County Bridge is shown in Fig. 5 .51. 

5.4.4 Comparison of maximum design stress and maximum stress from analysis 

The maximum design stress for the girders on the Chambers County Bridge was 

computed using the procedure described in Section 4.2.2. The maximum girder bending 

stress at midspan obtained using the program was 930 psi. The maximum design stress was 

equal to 1,130 psi and was calculated with the following input: 

DF = 0.9 wheel-lines per girder 
MwL = 3411 in-kips 
Mu= 3070 in-kips 
MDL= 0 in-kips 

Width of girder= 8.75 in 
Depth of girder= 43 in 
Sx = 2696 in3 

/b = l. 13 ksi = 1,130 psi 

From the stress comparison, it can be concluded that the finite element result 

compares well with the design stress computed from the design manual [ 1]. 
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5.4.5 Results and discussion 

Figs. 5.29 to 5.31 illustrate the results from the parametric study performed on the 

Chambers County Bridge for Load Cases 1 and 2. Upon varying the longitudinal modulus of 

elasticity of the girders from 1730 ksi to 2130 ksi, maximum deflections in the girders 

reduced by about 15%, but there was no significant increase in the maximum stresses in the 

girders for both load cases (Figs. 5.29 and 5.30). The longitudinal modulus of elasticity is a 

significant parameter influencing the deflection curve of the bridge. 

When the supports of the bridge were changed from simple supports to fixed 

supports, the difference between the deflection curves was significant (Fig. 5.31). Since the 

experimental deflections, in general, were lesser than the analytical results, this may be due 

to some effect from the rotational restraints, if any, at the abutments or/and due to the 

assumed material properties in the model. Deflection curves for all the other load cases show 

that the analytical results are comparable with the experimental observations (Figs. 5.32 to 

5.35). A mesh sensitivity analysis for the Chambers County Bridge (using Load Case 1 as the 

load for the sensitivity study) indicated that when the element size was 12 inches by 12 

inches, the deflection and stress results reached convergence (Fig. 5.36). The aspect ratio was 

fixed at unity for the mesh sensitivity study. 

5.5 The Hibbard Creek Bridge, Montana 

5.5.1 Skew bridges 

Skew bridges are effective solutions in bridge design when problems like complex 

alignment occur. The analysis of skew bridges is, however, complicated by the absence of 

orthogonal relationships. Rigorous solutions are difficult and are rarely obtained. In addition, 
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singularities occurring at the obtuse comers make the exact solution even more involved. The 

inadequacy of analytical methods leads to extensive use of numerical techniques like the 

finite difference method and the finite element method. In application of both numerical 

approaches, however, care should be exercised in assessment of stresses at the obtuse 

comers, where stress concentration is known to occur [15]. 

5.5.2 Description 

The Hibbard Creek Bridge is owned by Yellowstone County in Montana and is 

located on a double-lane gravel roadway accessing a 400,000-acre area encompassing 17 

townships. The bridge railing system is treated timber posts and a glue laminated rail, faced 

with a galvanized steel w-beam. The approach guardrail system is treated timber posts with a 

galvanized steel w-beam. The bridge is skewed (left end ahead) by 30 degrees and is made of 

Coast Douglas Fir Grade 2, with six girders supporting the deck panels. The deck panels are 

about 4 feet wide, 32 feet long, and 5.125 inches thick and are laid transversely on the 

girders. They are connected to the girders by lag bolts at 6 inches in from each edge of the 

panel. The bridge measured 40 feet in span, measured center-to-center of bearings. The 

girders have a nominal width of 8.75 inches, and a nominal thickness of 28.5 inches. The 

curbs on the bridge have a cross-section dimension of 8 inches by 8 inches. The material 

properties for the analytical model were obtained from the Douglas Fir Handbook [9] for the 

particular grade of lamination used on bridge. The deck panels have a longitudinal and 

transverse modulus of elasticity of 1800 kips-per-square inch (ksi) and 130 ksi, respectively. 

The shear modulus of the deck panels is about 100 ksi. The girders have a longitudinal and 

transverse modulus of elasticity of 2000 ksi and 240 ksi , respectively. The shear modulus of 
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the girders is about 106 ksi. Refer to Fig. 5 .40 for the design configuration of the bridge. 

5.5.3 Loading 

Six load tests were done on this bridge. The load test vehicles consisted of two fully 

loaded three-axle dump trucks with gross vehicle weights of 50,920 pounds (Truck 1) and 

50,080 pounds (Truck 2). The rear axles on Truck 1 weighed about 36,820 pounds while the 

rear axles on Truck 2 weighed about 36,000 pounds. The rear axles weighed about 

75% of the respective gross vehicle weights. The vehicles were positioned longitudinally on 
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the bridge so that the two rear axles were centered at midspan of the bridge (for the skew 

bridge, the midspan was considered to be the skew centerline of the bridge). The transverse 

vehicle track width, measured center-to-center of the rear tires, was 6 feet. The load cases are 

similar to the cases described in Section 5 .2 .2. Fig. 5 .41 shows the configuration of the trucks 

and the load positions for various load cases. 

5.5.4 Parametric study 

A parametric study on the Hibbard Creek Bridge was done for Load Cases 1 and 3. 

The input data described in Section 5.5.2 was used to make an initial run on the program. The 

longitudinal modulus of elasticity of the girders was then varied and a comparative plot for 

girder deflections at midspan of bridge was made. Comparison was also done with respect to 

the experimental data from field tests. Similar deflection comparisons were made by 

individually changing the curb height, and end restraint. Figs. 5.42 to 5.46 shows the 

comparative plots for the full parametric study. 

A comparative study of experimental values and analytical results for midspan girder 

deflections was also done for all the other load cases. The deflection plots for this 

comparison are shown in Figs. 5.47 to 5.50. A mesh sensitivity study was also done on the 

analytical model of the bridge to determine the adequate size of the element to be used. The 

analytical model of the Hibbard Creek Bridge is shown in Fig. 5.52. 

5.5.5 Comparison of maximum design stress and maximum stress from analysis 

The maximum design stress for the girders on the Hibbard Creek Bridge was 

computed using the procedure described in Section 4.2.2. The maximum girder bending 
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stress at midspan obtained using the program was 1,320 psi. The maximum design stress was 

equal to 1,560 psi and was calculated with the following input: 

DF = 0.96 wheel-lines per girder 
MwL = l 926 in-kips 
Mu = 1849 in-kips 
Mal = 0 in-kips 

Width of girder= 8.75 in 
Depth of girder = 28.5 in 
Sx = 1185 in3 

fi = 1.56 ksi = 1,560 psi 

From the stress comparison, it can be concluded that the finite element result 

compares well with the design stress computed from the design manual [ 1]. 

5.5.6 Results and discussion 

Figs. 5.42 to 5.46 illustrate the results from the parametric study performed on the 

Hibbard Creek Bridge for Load Cases 1 and 3. Upon varying the longitudinal modulus of 

elasticity of the girders from 1800 ksi to 2200 ksi, maximum deflections in the girders 

reduced by about 14% and maximum stresses in the girders increased by about 5% for both 

Load Cases 1 and 3 (Figs. 5.42 and 5.43). The longitudinal modulus of elasticity is a 

significant parameter influencing the deflection curve of the bridge. Deflection and stress 

curves also showed a significant change near the edges of the bridge when the curb 

dimensions were varied (Figs. 5.44 and 5.45). The changes as we moved towards the center 

of the bridge were minimal; thus, we can conclude that the effect of curbs is restricted to 

regions near the edge of the bridge. Upon varying curb height from Oto 8 inches, maximum 

deflections and stresses in the exterior girders decreased by 30% for Load Case 1, and by 

22% for Load Case 3. 

When the supports of the bridge were changed from simple supports to fixed 

supports, the difference between the deflection curves was significant (Fig. 5 .46). Since the 

experimental deflections, in general, were lesser than the analytical results, this may be due 
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to some effect from the rotational restraints, if any, at the abutments or/and due to the 

assumed material properties in the model. Deflection curves for all the other load cases show 

that the analytical results are comparable with the experimental observations (Figs. 5.47 to 

5.50). A mesh sensitivity analysis for the Hibbard Creek Bridge (using Load Case 1 as the 

load for the sensitivity study) indicated that when the element size was 12 inches by 12 

inches, the deflection and stress results reached convergence (Fig. 5.51). The aspect ratio was 

fixed close to unity for the mesh sensitivity study. 
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Fig. 5.39 Comparison of girder deflections at midspan upon changing longitudinal 
modulus of elasticity of the girders for Load Cases 1 and 3. 
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Fig. 5.51 Analytical model of the Chambers County Bridge. 
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6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

6.1 Summary 

Two programs were developed using the ANSYS Parametric Design Language 

(APDL), which is available in the ANSYS 5.5 general-purpose finite element software, to 

model and analyze glulam deck and girder bridges. In the program that modeled deck 

bridges, the deck panels were modeled with shell elements, and the stiffener beams and curbs 

were modeled with beam elements. In the program that modeled girder bridges, the deck 

panels and the girders were modeled with shell elements, while the curbs were modeled with 

beam elements. 

In order to simplify the models of deck and girder bridges and for ease of computer 

coding, several assumptions were made: 

1. The wearing surface was not modeled because it was assumed not to add any 

significant stiffness to the deck. 

2. Wheel loads were assumed to be concentrated point loads since their tire footprints 

were assumed to be very small in comparison to the bridge dimensions. 

3. The bridge was assumed to be simply supported and this was considered a 

conservative approach since in reality, there may be some rotational fixity at the 

abutments. 

4. The guardrails and timber posts were not included in the model since this was not 

considered to affect the results significantly. 
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Experimental tests were performed on two deck bridges and four girder bridges by 

others and the observations were compared to the analytical results obtained using the 

programs developed in this study. Maximum design stresses of panels in the case of deck 

bridges and girders in the case of girder bridges were also compared to the results from the 

program. 

6.2 Conclusions 

From the results and discussions presented in this report, it can be concluded that the 

programs greatly simplify user input and reduce valuable modeling time required from the 

user for the finite element modeling and analysis of deck and girder bridges. From the 

parametric studies conducted on the bridges, it can be seen that the longitudinal modulus of 

elasticity of the deck in the case of deck bridges, the longitudinal modulus of elasticity of the 

girders in the case of girder bridges, and curb dimensions have significant effect on bridge 

response. In the case studies, the experimental deflections were generally bounded by the 

results obtained from the simply supported and the fixed conditions. This means that there 

could be some rotational restraint present on the abutments. Comparison of maximum design 

and analytical stresses obtained from the program indicate good correlation, and the user 

should always do this to check the results obtained from the program. 

6.3 Recommendations 

Based on the analytical modeling and the comparison of results, the following is 

recommended: 

1. From the sensitivity study done on the bridges, the longitudinal modulus of elasticity 

of the deck in the case of deck bridges, longitudinal modulus of elasticity of the 
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girders in the case of girder bridges, and curb dimensions have significant effect on 

bridge response. The user should be careful when assessing the material properties of 

the bridge. Since the design handbook for wood [9] gives a range for each material 

property, and since the material properties of wood change with time, the user should 

consider doing a parametric study for the bridge, atleast for the properties mentioned 

above that have significant effect on bridge response. 

2. Further study can be done to model the curbs and railings on the bridge. This would 

· aid in better understanding the effect of edge stiffness due to the curbs and getting 

more realistic analytical results. 

3. In the deck bridges, the stiffener beams have been assumed to be connected to the 

deck with rigid connections. The connectors, however, have different stiffness in 

tension and compression. A more appropriate study can be done to test the 

assumption made in this regard. 

4. Currently, the programs analyze single-span bridges, but these programs can be 

extended to model and analyze multi-span bridges as well. 
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APPENDIX A. PREPROCESSOR LISTING FOR RIGHT ANGLED 

LONGITUDINAL TIMBER DECK BRIDGE WITH COMMENTS 

/filnam,Bridge 
/title,Bridge 
/prep7 

! Enter preprocessor 
! np = number of deck panels 
! pw = width of deck panel 
! pl = length of deck panel 
! pt= thickness of deck panel (assumed constant throughout bridge) 
! ns = number of stiffener beams 
! bw = width of stiffener beam 
! ht = height of stiffener beam 
! exb = longitudinal modulus of elasticity of stiffener beams 
! gb = shear modulus of stiffener beams 
! The user is asked to input required data; the values below are default values. 
*ask,np,number of deck panels,4 
*ask,pw,panel width in inches,76.5 
*ask,pl,panel length in inches,248.22 
* ask,pt,panel thickness in inches, 12 
* ask,ns,number of stiffeners, 1 
*ask,bw,beam width in inches,6 
*ask,bt,beam thickness in inches,12 
* ask,exb,Modulus of elasticity of stiffener beams in psi, 1800000 
*ask,gb,Shear modulus of stiffener beams in psi,80000 

! The panel is divided into 4 elements along the width of the panel 
! div = number of elements along the traffic direction spanning the distance 
! between the abutment and the closest stiffener beam 
! Number of elements in the longitudinal direction= (div*(ns+l)) + 1 
pw4=pw/4 
le=pl/(ns+ 1) 
n=le/pw4 
*if,mod(nint(n),2),eq,0,then 

div=nint(n) 
*else 

div=nint(n)-1 
*endif 
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lel =le/div 

! This segment generates nodes for the deck 
n,1,0 
ngen,5, 1,all,,,pw4, 
nmodif,2,6, 
nmodif,4,pw-6, 
ngen,np,5 ,all ,, ,pw, 
ngen,( div*(ns+ 1 ))+ 1,np* 5,all ,,,,lel , 

! Each panel is assigned a specific material property set consisting of longitudinal 
! and transverse moduli of elasticity, and shear modulus 
* ask,ans,Do all panels have same material properties (1 for yes/0 for no)?, 1 
* if,ans,eq, 1, then 

*else 

* ask,eyp,Longitudinal E of panels in psi, 1800000 
*ask,exp,Transverse E of panels in psi, 100000 
*ask,gp,Shear modulus of panels in psi, 130000 

et, 1,shell63 
r,1,pt, 
*do,i, 1,np, 1 
uimp,i,EX,EY ,,exp,eyp, 
uimp,i ,NUXY,,,0.021 , 
uimp,i ,GXY,,,gp, 
mat,i 
en, 1 +( (i-1 )*4 ),(i * 5)-4,(i * 5)-3 ,(i * 5)-3 +(np* 5) ,(i * 5)-4+(np* 5) 
egen,4, 1, 1 +((i-1 )*4) , 
*enddo 
egen,div*(ns+ 1 ),np* 5,all 

* dim,eypanel ,array ,np 
* dim,expanel,array ,np 
* dim,gpanel ,array,np 
et, 1,she1163 
r,1,pt 
*do,i, 1,np, 1 

*ask,eypanel(i),Longitudinal E of panel %i% in psi,2100000 
*ask,expanel(i),Transverse E of panel %i% in psi ,124000 
*ask,gpanel(i),Shear modulus of panel %i% in psi, 100000 
uimp,i,EX,EY,,expanel(i),eypanel(i), 
uimp,i,NUXY,,,0.021 , 
uimp,i,GXY,,,gpanel(i) , 
mat,i 
en, 1 +((i-1 )*4 ),(i * 5)-4,(i * 5)-3 ,(i * 5)-3+(np* 5) ,(i * 5)-4+(np* 5) 
egen,4, 1, l+((i-1 )*4), 
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*enddo 
egen,div*(ns+ 1 ),np*5,all 

*endif 

nsf=5*np*(( div*(ns+ 1 ))+ 1) 
esf=4*np*div*(ns+ 1) 
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! This routine selects the nodes on the deck to which the stiffener beam is connected 
! and generates nodes for the stiffener beam(s). 
nsel,S,NODE,,node(6,le,0) 
nsel ,A,NODE,,node(6,le,0)+2 
*do,i,2,np, 1, 
nsel,A,NODE,,node( 6,le,0)+( (i-1 )* 5) 
nsel ,A,NODE,,node(pw-6,le,0)+((i-l )* 5) 
*enddo 
* if,ns,gt, I ,then 
*do,i,2,ns, 1 
*do,j, 1,np, 1, 
nsel ,A,NODE,,node(6+(pw*(j-1 )),le,0)+((np* S)*div*(i-1 )) 
nsel ,A,NODE,,node(pw-6+(pw*(j-1 )),le,0)+((np* S)*div*(i-1 )) 
*enddo 
*enddo 
*endif 
ngen,2,nsf,all ,,,,, -(pt+bt )/2 

! Elements for the rigid connections between the deck and the stiffener beams are 
! generated below. 
nsel ,all 
et,np+ 1,beam4 
r,np+ 1, 100000, 100000, 100000, 1, 1, 
uimp,np+ I ,EX, , , 100000, 
et,np+2,beam4 
r,np+ 2, 100000, 100000, 100000, 1, 1, 
uimp,np+ 2,EX, , , 100000, 
type,np+ 1 
real ,np+ 1 
mat,np+ l 
en,esf+ I ,node( 6,le,0),nsf+node( 6,le,0) 
en,esf+ 2,node(pw-6,le,0),nsf+node(pw-6,le,0) 
type,np+2 
real ,np+2 
mat,np+2 
en,esf+ 3 ,node( 6,le,0),nsf+node( 6,le,0) 
en,esf +4 ,node(pw-6, le, 0) ,nsf+node(pw-6 ,le, 0) 
egen,np,5,esf+ 1,esf+4, 1 
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*if,ns,gt, 1,then 
egen,ns,div* 5 *np,esf+ 1,esf+( 4 * np ), 1 

*endif 
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! This segment generates elements for the stiffener beams. 
esfl =esf +( 4 * np * ns) 
et,np+ 3,beam4 
keyopt,np+ 3 ,9, 1 
r,np+ 3,bw*bt,(bt*bw* *3)/12,(bt* *3 *bw)/12,bt,bw, 
rmore, ,bw*bt**3 *(1/3-0.21 *(bt/bw)*(l-((bt* *4)/(12*bw* *4 )))) 
uimp,np+ 3,EX, , ,exb, 
uimp,np+3,NUXY,, ,.37, 
uimp,np+3 ,GXY,, ,gb, 
type,np+3 
real ,np+3 
mat,np+3 
en,esfl + 1,nsf+node( 6,le,0),nsf+node(pw-6,le,0) 
egen,np,5,esfl + 1 
*if,ns,gt, 1,then 

egen,ns,div*5*np,esfl + l ,esfl +np, 1 
*endif 
en,esfl +(np*ns )+ 1,nsf+node(pw-6 ,le,0),nsf+node( 6+pw,le,0) 
egen,np-1 ,5,esfl +(np*ns)+ 1 
*if,ns,gt, I ,then 

egen,ns,div*5*np,esfl +(np*ns)+ 1,esfl +(np*ns)+(np-1), 1 
*endif 

! Model curbs 
! cw = width of curbs 
! cd = depth of curbs 
! Curbs are modeled as beam elements running along the edges of the bridge between 
! abutments. The curbs are connected to the deck with rigid constraint equations. 
*ask,curbs,Curbs(l for yes,0 for no)?, 1 
*if,curbs,eq, I ,then 
*ask,cw,Enter the curb width,8 
*ask,cd,Enter the curb depth,8 
* get,emax 1,ELEM,,num,max 
* get,nmax 1,N OD E,,num,max 
nsel,S,NODE,, 1, 1 +(np* 5*div*(ns+ 1)),np*5 
nsel,A,NODE,,np* 5,(np* S)+(np* S*div*(ns+ 1 )),np* 5 
ngen,2,nmax 1,all ,,,,,(pt/2)+cd 
nsel,all 
r,np+4,cw* cd,( cd *cw** 3 )/12,( cd * * 3 *cw)/12,cd,cw, 
rmore, ,cw*cd* *3 *(1/3-0.21 *( cd/cw)*(l-(( cd * *4)/(12 *cw* *4)))) 
real ,np+4 
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en,emaxl + 1,1 +nmax l ,1 +nmaxl +(np*5) 
en,emax 1 + 2,(np* 5)+nmax 1,(np* 5 *2)+nmax 1 
egen,div*(ns+ 1 ),np* 5,emax 1 + 1,emax 1 + 2, 1 
*do,i, 1, 1 +(np* 5*div*(ns+ 1 )),np* 5 
cerig,i,i+nmax 1,ALL 
*enddo 
*do,i,np* 5,(np* 5)+(np* 5*div*(ns+ 1 )),np* 5 
cerig,i,i+nmax 1,ALL 
*enddo 
*endif 

! Loads are modeled as either rectangular patch loads or concentrated loads depending 
! upon the choice of the user. When the user chooses to model the loads as patch loads, 
! the program calculates the equivalent concentrated load by multiplying the pressure 
! due to the patch load to the patch area. If the patch load lies on two adjacent panels, 
! the program calculates the area of patch load on each panel and calculates the 
! equivalent concentrated loads. 

*ask,loads,Patch loads (0) or Concentrated loads (1 )? , 1 
*dim,X,array,50 
*dim,Y,array,50 
*dim,Q 12,array,50 
*if,loads,eq, 1,then 

*else 

* ask,q,Enter the number of loads, 1 
*do,i, 1,q, 1 

*enddo 

*ask,X(i),Enter X-coordinate of the load %i% 
*ask,Y(i),Enter Y-coordinate of the load %i% 
*ask,Q12(i),Enter the value of the load %i%,-9.1 

*dim,Xl ,array,50 
*dim,Yl,array,50 
*dim,Ql 1,array,50 
*ask,q I ,Number of patch loads? 
*do,i, 1,q 1, 1 

*ask,X1((2*i)-1),Enter lower left X-coordinate of patch load %i% 
*ask,Y1((2*i)-1),Enter lower left Y-coordinate of patch load %i% 
*ask,Xl (2*i),Enter upper right X-coordinate of patch load %i% 
*ask,Yl (2*i),Enter upper right Y-coordinate of patch load %i% 
*ask,Ql 1 (i),Enter the pressure value ofload %i% 

Nl =Xl ((2*i)-1)/pw 
* if,nint(N 1 ),ge,N 1, then 

N 1 =nint(N 1) 
*else 
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N 1 =nint(N 1 )+ 1 
*endif 

N2=X1(2*i)/pw 
* if,nint(N2 ),ge,N2, then 

N2=nint(N2) 
*else 

N2=nint(N2)+ 1 
*endif 

* if,N 1,eq,N2, then 

*else 

*endif 
*enddo 
q=2*ql 

*endif 

X((2*i)-1 )=(Xl ((2 *i)-1) + Xl (2*i))/2 
Y((2*i)-l)=(Y1((2*i)-l) + Y1(2*i))/2 
X(2*i)=0 
Y(2*i)=0 
Q 12( (2 *i)-1 )=Q 11 (i)*(Xl (2 * i)-Xl ((2 *i)-1) )*(Yl (2 * i)-Yl ( (2 *i)-1 )) 
Q12(2*i)=0 

X((2*i)-1 )=((Nl *pw)+ Xl ((2*i)-1 ))/2 
Y((2 *i)-1 )=(YI ((2 *i)-1 )+ Yl (2*i))/2 
X(2*i)=((Nl *pw)+ Xl (2*i))/2 
Y(2*i)=Y((2 *i)-1) 
Q 12((2 *i)-1 )=Q 11 (i)*((Nl *pw)-X 1 ((2*i)-l ))*(Yl (2*i)-Yl ((2 *i)-1 )) 
Q l 2(2*i)=Q 11 (i)*(Xl (2*i)-(N 1 *pw))*(Yl (2 *i)-Yl ((2*i)-1 )) 

! This segment calculates the net concentrated force acting on each node. This becomes 
! necessary when for example, during distribution of loads to the nodes of the 
! rectangular elements, some nodes may have more than one load acting on it. The loads 
! are distributed to the corners of the rectangular elements using Desai's [11] 
! interpolation functions as explained in Chapter 2. 
*dim,count,array,50 
*dim,foz,array,50 
*dim,mox,array,50 
*dim,moy,array,50 

*do,i,1,q,1 
Xo=X(i) 
Yo=Y(i) 
F=Q12(i) 

t=Xo/pw 
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* if,nint( t) ,gt, t, then 
t=nint(t) 

*else 
t=nint( t )+ 1 

*endif 

*if,Xo-((t-1 )*pw),lt,6,then 
nt=l 

*elseif,Xo-((t-1 )*pw),lt,pw/2,then 
nt=2 

*elseif,Xo-((t-1 )*pw),le,pw-6,then 
nt=3 

*else 
nt=4 

*endif 

p=Yo/lel 
*if,nint(p ),gt,p,then 

p=nint(p) 
*else 

p=nint(p )+ 1 
*endif 

node 1 =(t* 5)-4+(nt-1 )+((np* 5)*(p-1 )) 
node2=(t* 5)-4+nt+((np* 5)*(p- l )) 
node3=node2+(np*5) 
node4=nodel +(np*5) 

xe=Xo-nx(nodel) 
ye= Y o-ny(node 1) 
st=xe/(nx(node2)-nx(node 1)) 
tt=ye/lel 
nx 1 =1-(3 *(st* *2))+(2*(st* *3)) 
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nx2=(st* *2)*(3-(2*st)) 
nx3=(nx(node2)-nx(node 1 ))*st*((st-1 )* *2) 
nx4=(nx(node2)-nx(node 1 ))*(st* *2)*(st-1) 

nyl = 1-(3 *(tt* *2))+(2*(tt* *3)) 
ny2=(tt* *2)*(3-(2 *tt)) 
ny3=lel *tt*((tt-1)**2) 

ny4=lel *(tt**2)*(tt-l) 

fl =nxl *nyl *F 
myl =(-l)*nx3*nyl *F 
mxl =nxl *ny3*F 
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f2=nx2*nyl *F 
my2=(-l)*nx4*nyl *F 
mx2=nx2*ny3*F 

D =nx2*ny2*F 
my3=(-l)*nx4*ny2*F 
mx3=nx2 *ny4 *F 

f4=nxl *ny2*F 
my4=(-l)*nx3*ny2*F 
mx4=nxl *ny4*F 

*do,t,1,4*i,1 
*if,count(t),ne,node I ,then 

*if,count(t),eq,O,then 
dot=O 
*do,z, 1,t, 1 
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*if,count(z),eq,node I ,then 
dot=dot+ 1 

*else 

*endif 

*endif 
*enddo 
* if,dot,eq, 0, then 

count(t)=nodel 
foz(t)=fl 
mox(t)=mxl 
moy(t)=myl 

*endif 
*endif 

foz(t)=foz(t)+fl 
mox(t)=mox(t)+mxl 
moy(t)=moy(t)+myl 

*if,count(t),ne,node2,then 
*if,count(t),eq,O,then 

dot=O 
*do,z, 1,t, 1 

*enddo 

* if,count( z ),eq,node2, then 
dot=dot+ 1 

*endif 

*if,dot,eq,O,then 
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*else 

*endif 

*endif 
*endif 

134 

count(t)=node2 
foz(t)=f2 
mox(t)=mx2 
moy(t)=my2 

foz(t)=foz(t)+f2 
mox( t )=mox( t )+mx2 
moy( t )=moy( t )+my2 

* if,count( t),ne,node3 ,then 

*else 

*endif 

* if,count(t),eq,O,then 
dot=O 
*do,z, l ,t, 1 

*if,count(z),eq,node3,then 
dot=dot+l 

*endif 
*enddo 
*if,dot,eq,O,then 

*endif 
*endif 

count( t )=node3 
foz(t)=f3 
mox(t)=mx3 
moy(t)=my3 

foz(t)=foz(t)+f3 
mox( t)=mox( t )+mx3 
moy( t )=moy( t )+my3 

* if,count( t ),ne,node4, then 
*if,count(t),eq,O,then 

dot=O 
*do,z, 1,t, I 

*if,count(z),eq,node4,then 
dot=dot+ I 

*endif 
*enddo 
*if,dot,eq,0,then 

count( t )=node4 
foz(t)=f4 
mox(t)=mx4 
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moy(t)=my4 
*endif 

*enddo 
*enddo 

num=0 

*else 

*endif 

*endif 

foz(t)=foz(t)+f4 
mox( t )=mox( t )+mx 4 
moy( t)=moy( t)+my4 

*do,L, 1,50, 1 
*if,count(L),ne,0,then 

num=num+ l 
*endif 

*enddo 

finish 
/solu 

! This segment applies the loads on the nodes of the rectangular elements. 
*do,t,1,num,1 

*enddo 

f,count( t ),FZ,foz( t) 
f,count( t ),MX,mox( t) 
f,count(t),MY,moy(t) 

! Displacement constraints for the abutments. The bridge is assumed to be simply 
! supported. 
d,1,UX,,,np*5 , l ,UY,UZ,ROTY,ROTZ 
d,1 +(np*5*div*(ns+ l)),UY,,,(np*5)+(np*5*div*(ns+ 1)), 1,UZ,ROTY,ROTZ 

/pbc,all,, 1 
eplot 

! If user is satisfied with model, enter solution=l 
*ask,solution, Proceed with solution?(! for yes, 0 for no),1 
*if,solution,eq, 1,then 
! Solve the system for the given loading. 
/solu 
solve 
finish 

! Enter post processor module. The output from the program is redirected to the file 
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! "Results.dat" which resides in the current home directory of the user. Nodes of the 
! panels at midspan are selected and the midspan deflections are printed in the output. 
/postl 
plnsol,U,Z,0, 1 
* dim,nodenum,array ,2 *np 
* dim,nodenumX,array ,2 *np 
* dim,nodenum Y ,array ,2 *np 
* dim,nodedisp,array ,2 *np 
*dim,Label,char, 1,3 
*do,i, 1,np, 1 

*enddo 

nodenum((2*i)-1 )=NODE((i-1 )*pw,pl/2,0) 
nodenumX( (2 * i )-1 )= NX( nodenum( (2 * i )-1)) 
nodenum Y((2*i)-1 )=NY(nodenum((2*i)-1 )) 
nodenum(2*i)=NODE(i*pw,pl/2,0) 
nodenumX(2 * i)= NX( nodenum(2 * i)) 
nodenum Y (2 * i)= NY ( nodenum(2 * i)) 

*do,i, l ,2*np, 1 
*if,i,gt, 1,then 

*endif 

* if,nodenum( i) ,eq,nodenum( i-1), then 
nodenum(i)=nodenum(i)+ 1 

*endif 

nodedisp(i )= UZ( nodenum( i)) 
*enddo 
Label( 1, 1 )='X-coord' 
Label( 1,2)='Y-coord' 
Label(l,3)='UZ' 
/out,Results,dat,, 
/com,Midspan Panel deflections (in inches) 
I com,-------------------------------------
/ com 
*vwrite,Label( 1, 1 ),Label( 1 ,2),Label( 1,3) 
(Al0,Al0,Al0) 
*vwrite,nodenumX( 1 ),nodenum Y ( 1 ),nodedisp( 1) 
(F8.2,' ',F8.2,' ',F8.4) 
lout 

! The user is given a choice to pick the panels for which the user requires stress results. 
! The stress results can be either for all the elements in the panels or just the maximum 
! values. This again is the choice of the user. The stress results are calculated at the 
! centroid of each element at mid-thickness. 
*dim,panelnum,array,np+ 1 
*do,T, 1,np+ 1, 1 

*ask,panelnum(T),Enter panel no. for stress results (0 to stop), 
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*if,panelnum(T),eq,O,then 
*exit 

*endif 
*enddo 
* if,panelnum(l ),ne,O,then 
esel,S,MA T,,panelnum(l) 
*do,i,1,T-1 , 
esel,A,MAT,,panelnum(i) 
*enddo 
plnsol,u,z 
*endif 

*dim,elemnum,array,4*div*(ns+ 1) 
*dim,stressX,array,4*div*(ns+ 1) 
*dim,stressY,array,4*div*(ns+ 1) 
*dim,stressXY,array,4*div*(ns+ 1) 
*dim,elemnumX,array,4*div*(ns+ 1) 
*dim,elemnumY,array,4*div*(ns+ 1) 
*dim,Label I ,char, 1,4 
*if,panelnum( I ),ne,O,then 
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* ask,outp,Do you want the complete listing? (1 for yes/0 for no ),0 
*do,L, 1,T-1, 1 

/com, 
/com, 

panlab='Panel %panelnum(L )%' 
/out,Results,dat,,append 

*vwrite,panlab 
(A8) 

lout 
panel=panelnum(L) 
*do,i, 1,div*(ns+ I), I 

elemnum(( 4*i)-3)=((panel-1 )*4)+ 1 +(np*4*(i-1 )) 
elemnumX(( 4*i)-3)=centrx( elemnum(( 4*i)-3)) 
elemnum Y(( 4*i)-3)=centry( elemnum(( 4*i)-3 )) 
elemnum(( 4*i)-2)=elemnum(( 4*i)-3)+ 1 
elemnumX(( 4*i)-2)=centrx( elemnum(( 4*i)-2)) 
elemnum Y(( 4*i)-2)=centry( elemnum(( 4*i)-2)) 
elemnum(( 4*i)-1 )=elemnum(( 4*i)-3)+ 2 
elemnumX(( 4*i)-1 )=centrx( elemnum(( 4*i)- l )) 
elemnum Y(( 4*i)-1 )=centry( elemnum(( 4*i)-1 )) 
elemnum( 4*i)=elemnum(( 4*i)-3)+ 3 
elemnumX( 4 * i)=centrx( elemnum( 4 * i)) 
elemnum Y( 4*i)=centry( elemnum( 4*i)) 

*enddo 
etable,str X ,s,x 
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etable,str Y ,s,y 
etable,str XY ,s,xy 
*do,i, l ,4*div*(ns+ I) 
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* get,stressX(i),ELEM,elemnum(i),ET AB,str X, 
*get,stressY(i),ELEM,elemnum(i),ETAB,strY, 
*get,stressXY(i),ELEM,elemnum(i),ETAB,strXY, 

*enddo 

*if,outp,eq,O,then 
Maxstr X =abs( stressX( 1)) 
Maxstr Y =abs( stress Y ( 1)) 
Maxstr XY =abs( stressXY ( 1)) 
*do,r, l ,4*div*(ns+ 1 ), I 
* if,abs( stressX(r) ),ge, MaxstrX,then 
Maxstr X =abs( stressX(r)) 
maxnodXI =elemnumX(r) 
maxnodYl =elemnum Y(r) 
*endif 
*enddo 

*do,r, 1,4*div*(ns+ 1 ), 1 
* if,abs( stress Y ( r)) ,ge, Maxstr Y, then 
Maxstr Y =abs( stress Y ( r)) 
maxnodX2=elemnumX(r) 
maxnodY2=elemnum Y(r) 
*endif 
*enddo 

*do,r, 1,4*div*(ns+ 1 ), 1 
*if,abs(stressXY(r)) ,ge, MaxstrXY,then 
Maxstr XY =abs( stressXY (r)) 
maxnodX3 =elemnumX( r) 
maxnodY3 =elemnum Y(r) 
*endif 
*enddo 
/out,Results,dat,,append 
*vwrite,MaxstrY 
('Maximum longitudinal stress in panel is ',F6.4,' ksi .') 
/com,At location 
* vwri te,maxnodX2 
(' X = ',F7.2,' in.') 
*vwrite,maxnodY2 
(' Y = ',F7.2,' in.') 
/com, 
*vwrite,MaxstrX 
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('Maximum tranverse stress in panel is ',F6.4 ,' ksi .') 
/com,At location 
*vwrite,maxnodX 1 
(' X = ',F7.2,' in.') 
* vwri te,maxnod Y 1 
(' Y = ',F7.2,' in. ') 
/com, 
*vwrite,MaxstrXY 
('Maximum shear stress in panel is ',F6.4,' ksi.') 
/com,At location 
*vwrite,maxnodX3 
(' X = ',F7.2,' in.') 
*vwrite,maxnodY3 
(' Y = ',F7.2,' in. ') 
/out 
*else 

Label 1 ( 1, 1 )='Stress-Long' 
Label 1 (1 ,2)='Stress-Transverse' 
Label 1 ( 1,3 )='Shear stress' 
/out,Results,dat,,append 
/com, 
/com,Stresses in desired panel (in ksi) 
I com,----------------------------------

* vwri te,Label(l , 1 ),Label(l ,2),Label 1 (1 , 1 ),Label 1 (1 ,2),Label 1 (1,3) 
(Al O,Al O,Al2,Al2,Al2) 
*vwrite,elemnumX(l ),elemnum Y ( 1 ),stress Y( 1 ),stressX( 1 ),stressXY( 1) 
(F8 .2,' ',F8 .2,' ',F12.4,' ',Fl2.4,' ',F12.4) 

lout 
*endif 
*enddo 
*endif 

! The stiffener beam stress results are also redirected to the output file. In case of even 
! number of stiffener beams, the stress results are listed for the stiffener beam closest to 
! midspan. In case of odd number of stiffener beams, the stress results are listed for the 
! stiffener beam at midspan. The stress results listed are bending stresses at the bottom 
! of the stiffener beam. 
esel,all 
* dim, beamelem,array,2 * np-1 
* dim,beamelmX,array ,2 * np-1 
* dim, beam elm Y ,array ,2 * np-1 
* dim, beams tr ,array ,2 * np-1 
*if,mod(ns,2),ne,O,then 

I out,Resul ts,dat,,append 
/com, 
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*else 
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/com,Stresses in stiffener beam at midspan (in ksi) 
/com,----------------------------------------------
/out 
*do,i, 1,np-1 , 1 

*enddo 

beamelem((2*i)-1 )=esfl +((nint(ns/2)-1 )*np )+i 
beamelmX((2*i)-1 )=centrx(beamelem((2*i)-1 )) 
beamelm Y((2*i)-1 )=centry(beamelem((2*i)-l )) 
beamelem(2 *i)=esfl +(np*ns)+((nint(ns/2)-1 )*np )+(i-1) 
beamelmX(2 * i )=centrx(beamelem(2 * i)) 
beam elm Y (2 * i )=centry(beamelem(2 * i)) 

beamelem((2*np )-1 )=esfl +((nint(ns/2)-1 )*np )+np 
beamelmX((2*np )-1 )=centrx(beamelem((2 *np )-1 )) 
beam elm Y ( (2 * np )-1 )=centry(beamelem( (2 * np )-1)) 

/ out,Resul ts ,dat,,append 
/com, 
/com,Stresses in stiffener beam close to midspan (in ksi) 
/com,----------------------------------------------------
/out 
*do,i, 1,np-1 , 1 

*enddo 

beamelem((2*i)-1 )=esfl +(nint(ns/2)*np )+i 
beamelmX((2*i)-1 )=centrx(beamelem((2 *i)-1 )) 
beam elm Y ( (2 * i )-1 )=centry(beamelem( (2 * i )-1)) 
beamelem(2*i)=esfl +(np*ns)+(nint(ns/2)*np )+(i-2) 
beamelmX(2 * i)=centrx(beamelem(2 * i)) 
beamelm Y(2 *i)=centry(beamelem(2 * i)) 

beamelem( (2 * np )-1 )=esfl +( nint( ns/2) * np )+np 
beamelmX((2*np )-1 )=centrx(beamelem((2*np )-1 )) 
beamelm Y((2*np )-1 )=centry(beamelem((2 *np )-1 )) 

*endif 
ETABLE,bstr,LS, 10 
*do,i, 1,(2*np )-1, 1 

* get, beamstr( i) ,ELEM, beamelem( i) ,ET AB, bstr, 
*enddo 
Labell(l,4)='Bend. Stress' 
/out,Results,dat,,append 
/com, 
*vwrite,Label(l, 1 ),Label(l ,2),Label 1 (1 ,4) 
(Al0,Al0,Al0) 
*vwrite,beamelmX(l ),beamelm Y(l ),beamstr( 1) 
(F8.2 ,' ',F8.2 ,' ',F12.4) 
lout 
*endif 
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APPENDIX B. PREPROCESSOR LISTING FOR TIMBER GLULAM GIRDER 

BRIDGE WITH COMMENTS 

/filnam,Bridge 
/title,Bridge 
/prep7 

! Enter preprocessor 
! theta = skew angle of bridge in degrees (negative if left end is ahead) 
! sb = span of bridge in inches 
! pw = full panel width in inches 
! pl = panel length along skew in inches 
! pt = panel thickness in inches 
! ns = number of girders 
! bw = girder width 
! bt = girder height 
! Id = left overhang 
! rd = right overhang 
! bpwidth = width of partial panel at the bottom of model ( defaults to zero) 
! tpwidth = width of partial panel at the top of model ( defaults to zero) 
! np = number of full panels in the deck 
! elsize = user selected element size in inches 
*ask,theta,angle of skew in degrees (-ve if left end is ahead) ,-30 
*ask,sb,span of bridge in inches,472.92 
*ask,pw,full panel width in inches,48 
*ask,pl,panel length in inches along theta,388 .8 
* ask,pt,panel thickness in inches,5 .125 
*ask,ns,number of girders,6 
*ask,bw,girder width in inches,8.75 
*ask,bt,girder thickness in inches,28.5 
*ask,ld,left overhang in inches,23 .375 
* ask,rd,right overhang in inches,23 . 5 
*ask,ppanel,partial panels near the abutments?(O for no, 1 for yes), 1 
pi=3.14 
*if,ppanel,eq, 1,then 
*ask,bpwidth,width of partial panel at the bottom,40.92 
*ask,tpwidth,width of partial panel at the top,O 
*else 
bpwidth=O 
tpwidth=O 
*endif 
np=nint((sb-bpwidth-tpwidth)/pw) 
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sd=((pl *cos(theta*pi/180))-rd-ld)/(ns-1) 
* ask,elsize,Element size in inches?, 12 
pw4=elsize 

numl =ld/(pw4*cos(theta*pi/180)) 
*if,nint(numl ),lt,numl ,then 
numl =nint(numl)+ 1 
*else 
numl =nint(numl) 
*endif 

142 

! This segment generates nodes for the deck 
n, 1,0,bpwidth, 
local, 11 ,0,Q,0,Q,th~ta 
ngen,num 1 + 1, 1,all ,,, ld/(numl *cos(theta*pi/1 80)) 

num2=sd/(pw4 *cos(theta*pi/180)) 
*if,nint(num2),lt,num2,then 
num2=nint(num2)+ 1 
*else 
num2=nint(num2) 
*endif 

* if,ns-1 ,ne, 0, then 
ngen,(num2*(ns-1 ))+ 1,1,numl + 1,,,sd/(num2*cos(theta*pi/1 80)) 
*endif 

num3=rd/(pw4 *cos(theta*pi/180)) 
*if,nint(num3),lt,num3 ,then 
num3=nint(num3)+ 1 
*else 
num3=nint(num3) 
*endif 

ngen,num3+ 1,1,numl +(num2*(ns-1))+ 1,,,rd/(num3*cos(theta*pi/ 180)) 

diff=numl +(num2*(ns-1 ))+num3+ 1 
temp=pw/pw4 
* if,nint( temp ),lt, temp, then 
temp=nint(temp )+ 1 
*else 
temp=nint( temp) 
*endif 

csys,0 
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ngen,temp+ 1,diff,all ,, ,,pw/temp 
ngen,np,diff'l'(temp+ 1 ),all,,,,pw 

* get, botmax,N OD E,,num,max 
! Nodes for partial panels 
! ------------------------------------------
*if,bpwidth,gt,0,then 
ngen,2,botmax, 1,diff, 1,,-bpwidth 
p 1 =bpwidth/pw4 
*if,nint(p 1 ),lt,p 1,then 
p 1 =nint(p 1 )+ 1 
*else 
p 1 =nint(p 1 ) 
*endif 
*if,p 1,ge, I ,then 

143 

ngen,p 1 + l ,diff,botmax+ 1,botmax+diff, 1,,(bpwidth/p 1) 
*else 
ngen,2 ,diff,botmax+ 1,botmax+diff, 1,,bpwidth 
*endif 
*endif 

* get, topmax,N OD E,,num,max 
*if,tpwidth,gt,0,then 
ngen,2,topmax,botmax,botmax-diff+ 1,-1 ,, 
c 1 =tpwidth/pw4 
* if,nint( c 1 ),lt,c 1, then 
c 1 =nint( c 1 )+ 1 
*else 
c 1 =nint( c 1) 
*endif 
*if,c 1,ge, I ,then 
ngen,c 1 + 1,diff,botmax+topmax,botmax+topmax-diff+ 1,-1,,tpwidth/c 1 
*else 
ngen,2,diff, botmax+topmax, botmax+topmax-diff+ 1,-1 ,, tpwidth 
*endif 
*endif 

! Deck element properties 
!--------------------------------
! Each panel is assigned a specific material property set consisting of longitudinal 
! and transverse moduli of elasticity, and shear modulus. After the user inputs the 
! properties, elements are generated on the deck 
* ask,ans,Do all panels have same material properties ( 1 for yes/0 for no)?, 1 
*if,ans,eq, 1,then 

* ask,exp,Longitudinal E of panels in psi, 1800000 
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*enddo 

*else 

*enddo 

*endif 
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*ask,eyp,Transverse E of panels in psi,130000 
* ask,gp,Shear modulus of panels in psi, 100000 

et, 1,shell63 
r,1,pt, 
*do,i, 1,np, 1 
uimp,i,EX,E Y ,,exp,eyp, 
uimp,i,NUXY,,,0.021 , 
uimp,i,GXY,, ,gp, 
mat,i 

mat,1, 
en, 1, 1,2,2+diff, 1 +diff 
egen,diff-1, 1, 1, 
egen, temp,diff,all 
egen,np,(temp+ 1 )* diff,all ,,, 1 

* dim,eypanel,array ,np 
* dim,expanel,array ,np 
* dim,gpanel,array ,np 
et, 1,shell63 
r,1,pt 
*do,i,1,np,1 

*ask,expanel(i),Longitudinal E of full panel %i% in psi, 1800000 
*ask,eypanel(i),Transverse E of full panel %i% in psi, 130000 
*ask,gpanel(i),Shear modulus of full panel %i% in psi, 100000 
uim p,i,EX,EY ,,expanel( i ),eypanel( i ), 
uimp,i,NUXY,,,0.021 , 
uimp,i,GXY,,,gpanel(i), 
mat,i 

mat,1, 
en, 1, 1 ,2,2+diff, 1 +diff 
egen,diff-1 , 1, 1, 
egen, temp,diff,all 
egen,np,(temp+ 1 )*diff,all ,,, 1 

! Lower partial panel elements 
! ----------------------------
* get,elmax 1,ELEM,,num,max 
* if, bpwidth,gt, 0, then 

mat,1 
egen,2,botmax, 1,diff-1 , 1, 
*if,p 1,gt, 1,then 
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*endif 
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egen,p 1,diff,elmax 1 + l ,elmax 1 +diff, 1, 
*endif 

! Upper partial panel elements 

! ----------------------------
* get,elmax2,ELEM,,num,max 
*if,tpwidth,gt,O,then 

*endif 

mat,np 
egen,2,topmax+diff,elmax 1,elmax 1-diff+ 2,-1 , 
* if,c 1,gt, 1, then 
egen,c 1,diff,elmax2+ 1,elmax2+diff, 1, 
*endif 

! Girder nodes 
! --------------
! This routine selects the nodes on the deck to which the girders are connected and 
! generates nodes for the girders 
* get,nmax 1,node,,num,max 
*if,bpwidth,gt,O,then 
nsel,S,node,,node(ld,ld*tan(theta*pi/180),0) 
*do,j,O,ns-1, 1, 
* if,p 1,gt, 1, then 
*do,k,O,p 1-1, 1 
nsel,A,node,,node(ld,ld *tan(theta *pi/180),0)+(num2 *j)+( diff*k) 
*enddo 
*else 
nsel,A,node,,node(ld,ld *tan(theta *pi/180),0)+(num2 * j) 
*endif 
*enddo 
*endif 

*if,tpwidth,gt,O,then 
*if,bpwidth,eq,O,then 
nsel,S,node,,node(ld,sb+(ld*tan(theta*pi/180)),0) 
*else 
nsel,A,node,,node(ld,sb+(ld *tan(theta*pi/180) ),0) 
*endif 
*do,jt,O,ns-1, 1, 
*if,cl ,gt, 1,then 
*do,k,O,c 1-1 , 1 
nsel,A,node,,node(ld,sb+(ld *tan(theta *pi/180) ),O)+(num2 *jt)-( diff* k) 
*enddo 
*else 
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nsel,A,node,,node(ld,ld*tan(theta*pi/ l 80),0)+(num2*jt) 
*endif 
*enddo 
*endif 

*if,bpwidth,eq,O,then 
*if,tpwidth,eq,O,then 
nsel,S,node,,node(ld,ld*tan(theta*pi/180),0) 
*else 
nsel,A,node,,num 1 + 1 
*endif 
*do,j , l ,ns-1, 1, 
nsel,A,node,,numl + 1 +(num2*j) 
*enddo 
*endif 

*if,tpwidth,eq,O,then 
*if,bpwidth,eq,O,then 
* do,jt,O,ns-1 , 1 
nsel,A,node,,botmax-diff+ 1 +numl +(num2*jt) 
*enddo 
*else 
* do,jt,O,ns-1, 1 
nsel,A,node,,botmax-diff+ 1 +numl +(num2*jt) 
*enddo 
*endif 
*endif 

*do,i, l ,np, 1, 
*do,jp,O,ns-1 , 1 
*do,k, l ,temp-1, 1, 
nsel,A,node,,((i-1 )*(temp+ l)*diff)+ 1 +numl +(num2*jp)+(diff*k) 
*enddo 
*enddo 
*enddo 

temp 1 =(bt+(pt/2) )/pw4 
*if,nint(temp 1 ),lt,temp I ,then 
temp 1 =nint(temp I)+ I 
*else 
temp 1 =nint(temp I) 
*endif 

! Once the common nodes between the girders and deck are selected, nodes are 
! generated along the height of the girder 
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ngen, temp 1 + 1,nmax I ,all,,,,,-( (bt+(pt/2) )/temp 1) 

! Girder elements 
! --------------------
! Properties for the girders are obtained from the user and the girder elements are 
! generated. The program also allows the user to provide different material properties 
! for each girder 
* get,emax l ,elem,,num,max 
et,2,shell63 
r,2,bw, 
real,2, 
type,2, 
*ask,ans,Do all girders have same material properties (1 for yes,0 for no) ,1 
*if,ans,eq, I ,then 
*ask,exb,Longitudinal modulus of elasticity of girders in psi,2000000 
*ask,eyb,Transverse modulus of elasticity of girders in psi ,240000 
* ask,gb,Shear modulus of girders in psi, 106000 
*do,jt, 1,ns, 1 
uimp,np+jt,EX,EY, ,exb,eyb 
uimp,np+jt,NUXY,, ,0.021 , 
uimp,np+jt,GXY, , ,gb, 
*enddo 
*else 
* dim,eystringer,array ,ns 
* dim,exstringer ,array,ns 
* dim,gstringer ,array ,np 
*do,jt, 1,ns, 1 

*enddo 
*endif 

*do,i, 1,np, 1, 
*do,j ,0,ns-1, 1, 
mat,np+j+l 

*ask,eystring(it),Longitudinal E of girder %jt% in psi,2020000 
*ask,exstring(it) ,Transverse E of girder %jt% in psi,240000 
*ask,gstring(it),Shear modulus of girder %jt% in psi, 106000 
uimp,j t,EX,EY,,estring(it),eystring(it) , 
uimp,j t,NUXY,,,0.021 , 
uimp,jt,GXY,,,gstring(it) , 

z=((i-1 )*diff*(temp+ 1 ))+diff+(num2 *j) 
e,z+ 1 +num 1,z+ 1 +num 1 +diff,z+ 1 +num 1 +diff +nmax 1,z+ 1 +num 1 +nmax 1 
* get,emaxi,elem,,num,max 
egen, temp-2,diff,emaxi, 
*enddo 
*enddo 
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*do,i, 1,np-1 , 1, 
*do,j ,0,ns-1 , 1, 
zl =(i*diff*(temp+ 1 ))-(diff*2)+(num2*j) 
z2=(i*diff*(temp+ l))+diff+(num2*j) 

148 

e,zl + 1 +numl ,z2+ 1 +numl ,z2+ 1 +numl +nmaxl ,zl + 1 +numl +nmax 1 
*enddo 
*enddo 

! Generates elements on the girders if a bottom partial panel exists on the deck 
*if,bpwidth,eq,0,then 
*do,j ,0,ns-1 , 1 
z= l +numl +(num2*j) 
mat,np+j+ l 
e,z,z+diff,z+diff+nmax 1,z+nmax 1 
*enddo 
*else 
*do,j,0,ns-1 , 1, 
t=l +numl +(diff* (pl-l))+(num2*j) 
mat,np+j+ l 
e,t+botmax,1 +numl +diff+(num2*j),1 +numl +diff+(num2*j)+nmax l,t+botmax+nmaxl 
*enddo 
*do,j ,0,ns-1 , 1, 

*enddo 
*endif 

t= l +numl +(num2*j) 
e,t+botmax,t+botmax+diff,t+botmax+diff+nmax 1,t+botmax+nmax 1, 
*if,p 1,gt, 1,then 

* get,emaxi,elem,,num,max 
egen,p 1-1 ,diff,emaxi, 

*endif 

! Generates elements on the girder if a top partial panel exists on the deck 
*if,tpwidth,eq,0,then 
*do,j,0,ns-1 , 1 
z=botmax-diff+ 1 +numl +(num2*j)-diff 
mat,np+j+ l 
e,z,z+diff,z+diff+nmax 1,z+nmax 1 
*enddo 
*else 
*do,j ,0,ns-1 ,1, 
t=botmax-(diff*2)+ 1 +numl +(num2*j) 
mat,np+j+ l 
e, t, t+( diff* 2 )+topmax, t+( diff* 2 )+topmax+nmax 1, t+nmax 1 
*enddo 
*do,j ,0,ns-1 , 1, 
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t=botmax+ 1 +numl +topmax+(num2*j) 
mat,np+j+l 
e,t,t+diff,t+diff+nmax 1,t+nmax 1, 
* if,c 1,gt, 1, then 

*endif 
*enddo 
*endif 

* get,emaxi,elem,,num,max 
egen,c 1-1 ,diff,emaxi, 

* get,emax2,elem,,num,max 
egen,templ,nmaxl ,emaxl + 1,emax2,1, 

! Model curbs 
! cw= width of curbs 
! cd = depth of curbs 
! excurb = modulus of elasticity of curbs 
! Curbs are modeled as beam elements running along the edges of the bridge between 
! abutments. The curbs are connected to the deck with rigid constraint equations 
nsel,all 
*ask,curbs,Curbs(l for yes,O for no)? ,O 
* if,curbs,eq, 1, then 
*ask,cw,Enter the curb width,8 
* ask,cd,Enter the curb depth,21 
* get,elmax,ELEM,,num,max 
* get,nmax2,node,,num,max 
*if,bpwidth,gt,O,then 
nsel,S ,node,,node( 0, 0, 0) 
nsel,A,node, ,node( 0, 0, 0 )+diff-1 
* if,p I ,gt, 1, then 
*do,k,O,p 1-1 , 1 
nsel,A,node, ,node( 0, 0, 0 )+( diff* k) 
nsel,A,node,,node(O,O,O)+diff-1 +( diff*k) 
*enddo 
*endif 
*endif 

*if,tpwidth,gt,O,then 
*if,bpwidth,eq,O,then 
nsel,S ,node,,node(O,sb,O) 
nsel ,A,node,,node( 0, s b, 0 )+diff-1 
*else 
nsel,A,node,,node( 0 ,s b, 0) 
nsel,A,node, ,node(O ,s b, 0 )+diff-1 
*endif 
*if,c I ,gt, I ,then 
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*do,k,O,cl-1, 1 
nsel,A,node,,node(O,sb,0)-(diff*k) 
nsel,A,node,,node( 0 ,s b, 0 )+diff-1-( diff* k) 
*enddo 
*endif 
*endif 

*if,bpwidth,eq,O,then 
*if,tpwidth,eq,O,then 
nsel,S ,node,,node(0,0,0) 
nsel,A,node, ,node( 0, 0, 0 )+diff-1 
*else 
nsel,A,node,,node( 0, 0, 0) 
nsel,A,node,,node( 0, 0, 0 )+diff-1 
*endif 
*endif 

*if,tpwidth,eq,O,then 
nsel,A,node,, botmax-diff+ 1 
nsel,A,node,, botmax 
*endif 

*do,I, 1,np, 1, 
*do,k, 1,temp-1, 1, 
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nsel ,A,node,,((1-1 )*(temp+ 1 )*dif:f)+ 1 +( diff*k) 
nsel,A,node,,((1-1 )*(temp+ 1 )*diff)+diff+( diff*k) 
*enddo 
*enddo 
ngen,2,nmax2,all,,, ,,(pt/2)+5 
et,3,beam4 
r,3,cw*cd,( cd *cw** 3)/12,( cd* * 3 *cw)/12,cd,cw, 
rmore, ,cw*cd* *3 *(1 /3-0.21 *( cd/cw)*(l-(( cd* *4 )/(12*cw* *4)))) 
real,3 
*ask,excurb,Enter the modulus of elasticity of the curbs in psi, 1800000 
uimp,np+ns+ 1,EX,,,excurb 
mat,np+ns+ 1 
type,3 
*do,I, 1,np, 1, 
*do,k, 1,temp-2, 1, 
e,((1-1 )*(temp+ 1 )*diff)+ 1 +( diff*k)+nmax2,((1-1 )*(temp+ 1 )*diff)+ 1 +( diff*k)+nmax2+diff 
e,((1-1 )*(temp+ 1 )*diff)+diff+( diff*k)+nmax2,((l-
l) * ( temp+ 1) * diff)+diff +( diff* k )+nmax2 +diff 
*enddo 
*enddo 
*do,I, 1,np-1, 1, 
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e,(I*difP(temp+ l))+nmax2-(difP2)+ 1,(I*difP(temp+ l))+diff+nmax2+ 1 
e,(I*difP(temp+ l))+nmax2-diff,(I*difP(temp+ l))+nmax2+(difP2) 
*enddo 

*if,bpwidth,eq,O,then 
e, 1 +nmax2, 1 +nmax2+diff 
e,diff+nmax2,( difP2)+nmax2 
*else 
* if,p 1,gt, 1,then 
*do,l,1 ,pl-1,1 
e, 1 +botmax+nmax2+(difP(I-1)), 1 +botmax+nmax2+(difPI) 
e,diff+botmax+nmax2+(difP(I-1)),diff+botmax+nmax2+(difPI) 
*enddo 
e, l +botmax+nmax2+(difP(pl-1)), l +nmax2+diff 
e,diff+botmax+nmax2+( difP(p 1-1 )),( difP2)+nmax2 
*else 
e, 1 +botmax+nmax2, 1 +nmax2+diff 
e,diff+botmax+nmax2,(difP2)+nmax2 
*endif 
*endif 

*if,tpwidth,eq,O,then 
e,botmax-(difP2)+ 1 +nmax2,botmax-diff+ 1 +nmax2 
e, botmax-diff+nmax2, botmax+nmax2 
*else 
* if,c I ,gt, I ,then 
*do,I,1,cl-1 ,1 
e, botmax+ 1 +topmax+nmax2+( dif P (1-1) ), 1 +topmax+diff +botmax+nmax2+( dif PI) 
e,diff+botmax+topmax+nmax2+( difP(I-1) ),( difP2)+topmax+botmax+nmax2+( difP I) 
*enddo 
e,botmax-(difP2)+ 1 +nmax2,botmax+ 1 +topmax+nmax2 
e, botmax-diff+nmax2, botmax+topmax+diff +mnax2 
*endif 
*endif 

*do,I, 1,np, 1, 
*do,k, 1,temp-1 , 1, 
zz=((l-1 )*(temp+ 1 )*diff)+( difPk) 
cerigid,zz+ 1,zz+ 1 +nmax2 
cerigid,zz+diff,zz+diff +nmax2 
*enddo 
*enddo 

* if, bpwidth,gt, 0, then 
cerigid, 1 +botmax, 1 +botmax+nmax2 
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cerigid,diff+botmax,diff+botmax+nmax2 
*if,p 1,gt, 1,then 
*do,I,1,pl-1,1 , 
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cerigid, 1 +botmax+( diff*I), 1 +botmax+( diff*I)+nmax2 
cerigid,( diff*(I+ 1 ))+botmax,( diff*(I+ 1 ))+botmax+nmax2 
*enddo 
*endif 
*else 
cerigid, 1, 1 +nmax2 
cerigid,diff,diff+nmax2 
*endif 

*if,tpwidth,gt,0,then 
cerigid,botmax+ 1 +topmax,botmax+ 1 +topmax+nmax2 
cerigid,diff+botmax+topmax,botmax+diff+topmax+nmax2 
* if,c 1,gt, 1, then 
*do,I, 1,c 1-1 , 1, 
cerigid, 1 +botmax+topmax+( diff*I) , 1 +botmax+topmax+( diff*l)+nmax2 
cerigid,(diff*(I+ l))+botmax+topmax,(diff*(I+ l))+botmax+nmax2+topmax 
*enddo 
*endif 
*else 
cerigid,botmax-diff+ l ,botmax-diff+ 1 +nmax2 
cerigid,botmax,botmax+nmax2 
*endif 

*endif 

nsel,all 
! Loads are modeled as concentrated loads. 
! X(i) = X-coordinate of the ith load 
! Y(i) = Y-coordinate of the ith load 
! Q12(i) = Value of ith load 
*dim,X,array,50 
*dim,Y,array,50 
*dim,Q12,array,50 

* ask,q,Enter the number of loads, 1 
*do,i, 1,q, 1 

*enddo 

*ask,X(i),Enter X-coordinate of load %i% 
*ask,Y(i),Enter Y-coordinate of load %i% 
*ask,Q12(i),Enter the value of load %i% 

! This segment calculates the element number upon which the concentrated load falls. 
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! The program then calculates the area of that element and applies the concentrated 
! load as a pressure over the entire surface of the element. The value of the pressure 
! load is the concentrated load divided by the element area 
*dim,count,array,50 
* dim,foz,array ,5 0 
*dim,mox,array,50 
*dim,moy,array,50 

*do,i,1,q,1 
Xo=X(i) 
Yo=Y(i) 
F=Q12(i) 

*if, Xo,ge,0,then 
* if,Xo,le,ld, then 
xel=Xo*numl /ld 
*elseif,Xo,le,(pl *cos(theta *pi/180) )-rd,then 
xel=numl +((Xo-ld)*num2*(ns-1 )/((pl *cos(theta*pi/ 180))-ld-rd)) 
*elseif,Xo,le,(pl *cos(theta *pi/180)) 
xel=num 1 +(num2*(ns-1 ))+((Xo-(pl *cos(theta*pi/180))-rd)*num3/((pl *cos(theta*pi/180))
rd)) 
*endif 
*endif 

*if,nint(xel),lt,xel,then 
xel=nint(xel)+ 1 
*else 
xel=nint(xel) 
*endif 

*if, Yo,ge,(Xo*tan(theta*pi/180))+bpwidth,then 
*if, Yo,lt,(Xo*tan(theta*pi/180))+sb-tpwidth,then 
*do,k, 1,np, 1 
*if, Yo,lt,(Xo.*tan(theta*pi/180))+bpwidth+(k*pw),exit 
*enddo 
/com,'k' is the panel in which the load lies 
yel 1 =(Yo-(Xo*tan(theta*pi/180))-bpwidth-((k-1 )*pw)) 
yel=(yel 1 *temp/pw)+((k-1 )*temp) 
*elseif, Yo,le,(Xo*tan(theta*pi/180))+sb,then 
yel 1 =Yo-(Xo*tan(theta*pi/180))-sb+tpwidth 
* if,c I ,gt, 1, then 
yel=yell *cl /bpwidth 
*else 
yel=l 
*endif 



www.manaraa.com

*endif 
*elseif, Yo,ge,(Xo*tan(theta*pi/180)),then 
yell =Yo-(Xo*tan(theta*pi/180)) 
*if,p 1,gt, 1,then 
yel=yell *pl/bpwidth 
*else 
yel=l 
*endif 
*endif 

*if,yel,gt, 1,then 
* if,nint(yel) ,1 t,yel, then 
yel=nint(yel)+ 1 
*else 
yel=nint(yel) 
*endif 
*endif 
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! Assigning element numbers to selected elements 
* if, Y o,ge,(Xo *tan( theta *pi/180) )+bpwidth, then 
*if, Yo,lt,(Xo*tan(theta*pi/180))+sb-tpwidth,then 
elemnum=xel+((yel-1 )*( diff-1 )) 
*elseif, Yo,le,(Xo*tan(theta*pi/180))+sb,then 
elemnum=elmax2 +xel +( (yel-1) * ( diff-1)) 
*endif 
*elseif, Yo,ge,(Xo*tan(theta*pi/180)),then 
elemnum=elmax 1 +xel +( (yel-1 )* ( diff-1)) 
*endif 

* if,elemnum,gt, 1, then 
arelem=( nx(nelem( elemnum,2) )-nx( nelem( elemnum, 1))) * ( ny(nelem( elemnum,4) )
ny( nelem( elemnum, 1))) 
fl =F/arelem 

*do,t,1,i,1 
* if,count( t ),ne,elemnum, then 

*if,count(t) ,eq,O,then 
dot=O 
*do,z,1,t,1 

*enddo 

* if,count( z) ,eq,elemnum, then 
dot=dot+ 1 

*endif 

* if,dot,eq, 0, then 
count( t )=elemnum 
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foz(t)=fl 
*endif 

*endif 
*else 

foz(t)=foz(t)+fl 
*endif 

*enddo 
*endif 
*enddo 

num=O 
*do,L, 1,50, 1 

*if,count(L),ne,O,then 
num=num+l 

*endif 
*enddo 

finish 

! This segment applies the loads as pressures on surface of the elements 
/solu 
*do,t, 1,num, 1 

sfe,count(t),2,pres,,-foz(t) 
*enddo 

! Displacement constraints for the abutments. The bridge is assumed to be simply 
! supported 
*if,bpwidth,gt,O,then 
*do,j ,O,ns-1 , 1, 
d,1 +botmax+numl +(num2*j)+(nmaxl *templ),UX,,,,,UY,UZ 
*enddo 
*else 
*do,j ,O,ns-1 , 1, 
d,1 +numl +(num2*j)+(nmaxl *templ),UX,,,,,UY,UZ 
*enddo 
*endif 
*if,tpwidth,gt,O,then 
*do,j ,O,ns-1 , 1, 
d,nmaxl-diff+ 1 +numl +(num2*j)+(nmaxl *templ),UX,,,,,UZ 
*enddo 
*else 
*do,j ,O,ns-1 , 1, 
d,botmax-diff+ 1 +numl +(num2*j)+(nmaxl *templ ),UX,,,,,UZ 
*enddo 
*endif 
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/psf,pres,norm,3 
/pbf,defa,, 1 
/psymb,dot, 1 
/pbc,all, 1 
gplot 
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! If user is satisfied with model, enter solution=! 
*ask,solution,Proceed with solution? (1 for yes/0 for no), 1 
*if,solution,eq, 1,then 
! Solve the system for the given loading 
/solu 
solve 
finish 

! Enter the postprocessor module. The output from the program is redirected to the file 
! "Results.dat" which resides in the current home directory of the user. Girder nodes at 
! midspan are selected and the midspan deflections and bending stresses at these nodes 
! are printed in the output. In the case of skew bridges, the midspan is along the skew 
! centerline. The girder nodes at midspan are located at the bottom of each girder. 
/postl 
!plnsol,U,Z,0,1 
* dim,nodenum,array ,ns 
* dim,nodenumX,array ,ns 
*dim,nodenum Y,array,ns 
* dim,nodedisp,array ,ns 
* dim,stress Y ,array ,ns 
*dim,Label ,char, 1,4 
/postl 
nodenum( 1 )=node(ld,l d *tan( theta* pi/ 180 )+( s b/2), -(pt/2 )-bt) 
nodenumX( 1 )=nx( nodenum( 1)) 
nodenum Y ( 1 )=ny( nodenum( 1)) 
nodedisp( 1 )=uz( nodenum( 1)) 
*get,stressY(l),NODE,nodenum(l),S,Y 
*do,j, 1,ns-1 , 1, 
nodenum(j + 1 )=node(ld,ld * tan( theta* pi/ 18 0 )+( s b/2), -(pt/2 )-bt )+( num2 * j) 
nodenumX(j + 1 )=nx(nodenum(j+ 1 )) 
no den um Y (j + 1 )=ny(nodenum(j+ 1)) 
nodedisp(j + 1 )=uz( nodenum(j + 1)) 
*get,stressY(j+ 1 ),NODE,nodenum(j+ 1 ),S,Y 
*enddo 
Label( 1, 1 )='X-coord' 
Label( l ,2)='Y-coord' 
Label( 1,3 )='UZ' 
Label( 1,4 )='Ben-Stress' 
I out,Results,dat,, 
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/com,Midspan Girder Deflections (in inches) 
I com, --------------------------------------
/com 
/com 
*vwrite,Label(l , 1 ),Label(l ,2),Label(l ,3) 
(AlO,AlO,AlO) 
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*vwrite,nodenumX( 1 ),nodenum Y ( 1 ),nodedisp( 1) 
(F8.2,' ',F8.2,' ',F8.4) 
/com, 
/com, 
/com,Midspan Girder Bending Stresses (in ksi) 
/com,----------------------------------------
/com,(Negative stress denotes compression) 
/com 
*vwrite,Label(l , 1 ),Label(l ,2),Label(l ,4) 
(Al O,Al O,Al 0) 
*vwrite,nodenumX(l ),nodenum Y(l ),stress Y ( 1) 
(F8.2,' ',F8.2,' ',F8.4) 
/out 
*endif 
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APPENDIX C. DESCRIPTION OF THE USAGE OF THE PROGRAMS FOR 

ANALYZING GLULAM DECK BRIDGES AND GLULAM GIRDER BRIDGES 

C.1 Procedure to use the programs with ANSYS 

The programs for analyzing deck and girder bridges are called 'Deck. txt' and 

'Girder. txt' respectively. These programs are text files and can be edited, if necessary, using 

any text editor like Wordpad, Notepad, or MS Word. To start using the program(s): 

1. Copy the program 'Deck. txt' for analyzing longitudinal glulam deck bridges or 

'Girder. txt' for analyzing glulam girder bridges, from the floppy disk to your hard 

drive. 

2. Open ANSYS 5.5 on your computer. On the ANSYS utility menu bar, click on File 

and then on Read input/ram . 

3. Click on the directory you have copied the program to and then click on the program 

name and press OK. 

4. Enter the input data into the input windows that pop up on the screen. The model of 

the bridge is created, solved, and the output is redirected to the file 'Results. dat' . The 

output file can opened with any text editor like Wordpad, Notepad or MS Word. The 

results can also be exported into MS Excel to get a graphical representation of the 

results . 

Note: 

1. The X-axis is along the width of the bridge. 
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2. The Y-axis is in the longitudinal direction, which along the direction of traffic. 

3. The Z-axis is positive upwards (according to the right-hand rule). 

4. Input concentrated load acting in negative Z-direction as negative. Input pressure 

acting in negative Z-direction as positive. This is the same sign convention used in 

ANSYS. 

C.2 Limitations of programs 

1. These programs have to be used from within the ANSYS graphical user interface. 

The user has to start the ANSYS software first , then use the ANSYS menu option 

Read input from, and click on the required program file to start using the program. 

2. The programs do not allow the user to go back and make changes to the input. If the 

user requires to change the input, the user should start the program again and enter the 

new input. 

3. The output files only give a text representation of the desired results . To obtain results 

apart from those displayed in the output file , the user must have a moderate 

understanding of ANSYS. Click on General Postprocessor in the main menu, and 

then Plot Results to obtain contour plots of stresses and deflections. 

C.3 User manual for preprocessor for right angled longitudinal glulam deck bridges 

1. Enter number of deck panels = np 

2. Enter panel width in inches = pw 

3. Enter panel length in inches = pl 

4. Enter panel thickness in inches = pl 
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5. Enter number of stiffeners = ns 

6. Enter beam width in inches= bw 

7. Enter beam thickness in inches = bt 

8. Enter modulus of elasticity of stiffener beams in psi = exb 

9. Enter shear modulus of stiffener beams in psi= sb 

I C 
u .2 

\H...., 
4-i u 

c,j <!.) 
~ .::::= 

[-, "O 
y (+) 

(0,0) X (+) 

Fig. C.1 Sketch showing the Cartesian coordinate axes for the longitudinal glulam deck 
bridge. 

10. Do all panels have same material properties (1 for yes/0 for no)? = ans 

11. If ans= 1, then 

Enter longitudinal E of panels in psi = eyp 

Enter transverse E of panels in psi = exp 

Enter shear modulus of panels in psi = gp 

12. If ans=0, then 

Enter longitudinal E of panel i in psi= eypanel(i) 
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Enter transverse E of panel i in psi = expanel (i) 

Enter shear modulus of panel i in psi= gpanel(i) 

where i = panel number. 

13. Enter curbs (1 for yes, 0 for no)? = curbs 

14. If curbs=l, then 

Enter the curb width in inches = cw 

Enter the curb depth in inches = cd 

15. Enter patch loads (0) or concentrated loads (1 )? = loads 

16. If loads= 1, then 

Enter the number of loads = q 

Enter X-coordinate of load i = X(i) 

Enter Y-coordinate ofload i = Y(i) 

Enter the value of load i = QI 2(i) 

where i = load number. 

17. If loads=O, then 

Enter number of patch loads = q 1 

Enter lower left X-coordinate of patch load i = Xl (2 *i-1) 

Enter lower left Y-coordinate of patch load i = Yl(2*i-l) 

Enter upper right X-coordinate of patch load i = XI (2*i) 



www.manaraa.com

162 

Enter upper right Y-coordinate of patch load i = Xi (2 *i) 

Enter pressure value of load i = Qi i (i) 

where i = load number. 

18. Proceed with solution? (1 for yes/0 for no)= solution 

19. If solution=l , proceed from 20. 

20. Enter panel no. for stress results (0 to stop) = panelnum(T) 

21. If the user has indicated the panel number for which he desires the stress results, then 

Do you want the complete listing? (1 for yes/0 for no) = outp 

If outp= 1, the complete listing is stored in the file Results. dat, else only the 

maximum values of stresses for the desired panels are stored in the file . 

22. At this point, the post processor is executed and the output is routed to the file 

Results. dat; the output consists of midspan deflections of the panel edges, panel 

stresses for user-inputed panel numbers, and midspan stiffener beam bending stresses. 

23. The output file Results. dat can be opened using any text editor like MS Word, 

Wordpad or Notepad. To obtain a graphical representation of the results in MS Excel , 

select the results by pressing down the left button on the mouse ( or holding down the 

SHIFT key on the keyboard) and releasing when selection is over. Right click on the 

mouse and choose 'Copy'. Open MS Excel , right click on any cell, and select 'Paste'. 

Click on 'Data' option on the main menu bar, then on 'Text to columns' . Click 

'Finish' and now, the data is available for graphing on Excel. . 
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C.4 User manual for preprocessor for glulam girder bridges 

1. Enter angle of skew in degrees (-ve if left end ahead) = theta 

2. Enter span of bridge in inches = sb 

3. Enter full panel width in inches = pw 

4. Enter panel length in inches along theta= pl 

5. Enter panel thickness in inches = pt 

6. Enter number of girders = ns 

7. Enter girder width in inches = bw 

8. Enter girder thickness in inches = bt 

9. Enter left overhang in inches = ld 

10. Enter right overhang in inches = rd 

11. Partial panels between abutments? (0 for no, 1 for yes)= ppanel 

12. If ppanel=l , then 

Enter width of partial panel at the bottom = bpwidth 

Enter width of partial panel at the top = tpwidth 

13. Enter element size in inches = elsize 

14. Do all panels have same material properties (1 for yes/0 for no)?= ans 

15. If ans=l , then 
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Enter longitudinal E of panels in psi = exp 

Enter transverse E of panels in psi = eyp 

Enter shear modulus of panels in psi = gp 

Y(+) Y(+) 

ositive 

X(-) X(+) X(-) X(+) 

Y(-) Y(-) 

Fig. C.2 Sketch showing the Cartesian coordinate axes for the glulam girder bridge. 

16. If ans=O, then 

Enter longitudinal E of full panel i in psi = expanel (i) 

Enter transverse E of full panel i in psi = eypanel (i) 

Enter shear modulus of full panel i in psi= gpanel(i) 

where i = full panel number. Numbering starts from bottom. 

17. Do all stringers have same material properties? ( 1 for yes,O for no) = ans 

18. If ans=l, then 
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Enter longitudinal modulus of elasticity of girders in psi = exb 

Enter transverse modulus of elasticity of girders in psi = eyb 

Enter shear modulus of girders in psi = gb 

19. If ans=O, then 

Enter longitudinal E of girder jt in psi = eystring(jt) 

Enter transverse E of girder jt in psi = exstring(jt) 

Enter shear modulus of girder jt in psi = gstring(jt) 

where jt = girder number. Numbering of girders start from left. 

20. Enter curbs (1 for yes,O for no)?= curbs 

21. If curbs=l , then 

Enter the curb width in inches = cw 

Enter the curb depth in inches = cd 

Enter the modulus of elasticity of the curbs in psi = excurb 

22. Enter the number of loads = q 

23. Enter X-coordinate of load i = X(i) 

Enter Y-coordinate of load i = Y(i) 

Enter the value of load i = Qi 2(i) 

where i = load number (i.e. from 1 to q) 

24. Proceed with solution? (1 for yes/0 for no) = solution 
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25 . If solution=! , proceed from 26. 

26. At this point, the postprocessor is executed and the output is routed to the file 

Results. dat; the output consists of midspan deflections and maximum bending 

stresses of the girders measured at nodes located at the bottom of the girders. 

27. These output results can be imported into an Excel spreadsheet and graphs can be 

plotted. 

C.5 Example problem for longitudinal timber glulam deck bridge 

To illustrate the use of the preprocessor, the Angelica Bridge has been chosen with 

the loading being Load Case 1. The material properties and load positions on the bridge have 

already been described in Section 3.2. 

Input data: 

Enter number of deck panels = 8 

Enter panel width in inches = 53.4 

Enter panel length in inches = 356 

Enter panel thickness in inches = 14.4 

Enter number of stiffeners = 4 

Enter beam width in inches = 6.75" 

Enter beam thickness in inches = 4.25" 

Enter modulus of elasticity of stiffener beams in psi = 1625000 
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Enter shear modulus of stiffener beams in psi = 80000 

Do all panels have same material properties? (1 for yes/0 for no) = 1 

Enter longitudinal E of panels in psi = 1700000 

Enter transverse E of panels in psi = 240000 

Enter shear modulus of panels in psi = 100000 

Enter curbs ( 1 for yes/0 for no)? = 1 

Enter the curb width in inches = 8 

Enter the curb depth in inches = 21 

Enter patch loads (0) or concentrated loads (1 )? = 1 

Enter the number of loads = 4 

Enter X-coordinate of load 1 in inches = 237 .6 

Enter Y-coordinate of load 1 in inches = 150. 7 

Enter the value of load 1 in pounds = -13225 

Enter X-coordinate ofload 2 in inches = 237 .6 

Enter Y-coordinate of load 2 in inches = 205 .3 

Enter the value of load 1 in pounds = -13225 

Enter X-coordinate of load 3 in inches = 3 09 . 6 

Enter Y-coordinate of load 3 in inches = 150.7 

Enter the value of load 1 in pounds= -13225 
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Enter X-coordinate ofload 4 in inches= 309.6 

Enter Y-coordinate ofload 4 in inches= 205.3 

Enter the value of load 1 in pounds = -13225 

Proceed with solution? (1 for yes/0 for no) = 1 

Enter panel no. for stress results = 6 

Enter panel no. for stress results = 0 

Do you want the complete listing? ( 1 for yes/0 for no) = 0 

Output data: 

The output is redirected to the file Results. dat. The output for the above input data 

looks as below. This output can be copied and pasted onto a spreadsheet. This data, however 

gets pasted into one cell of the sheet. To change the format, i.e. , to have individual cells 

containing individual data, the user should do the following . 

1. Click on 'Data ' on the menu of the Excel sheet. 

2. Click on 'Text to columns '. 

3. In the window that pops up, click on 'Fixed width '. Click on 'Next' and then 'Finish '. 

Note: 

1. Negative value of deflection implies downward deflection, i.e. deflection in the 

negative Z- direction. 

2. Stress results are the bottom stresses for the shell elements and the beam elements. 

3. Negative stress indicates compression and positive stress indicates tension. 
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Table C.1 Midspan panel deflections (inches). 

X-coord Y-coord 

0.0 178 

53.4 178 

53.4 178 

106.8 178 

106.8 178 

160.2 178 

160.2 178 

213.6 178 

213.6 178 

267.0 178 

267.0 178 

320.4 178 

320.4 178 

373.8 178 

373.8 178 

427.2 178 

where X-coord = x-coordinate in inches, 
Y-coord = y-coordinate in inches, and 
UZ = deflection in inches. 

Panel- 6 

Maximum longitudinal stress in panel is 541.5 psi. 
At location 

X = 31 7.40 in. 
Y = 186.90in. 

Maximum tranverse stress in panel is 369.2 psi. 
At location 

X = 304.05 in. 
Y = 151.30 in. 

Maximum shear stress in panel is 230.3 psi. 
At location 

X = 304.05 in. 
Y = 26.70 in. 

uz 
-0.0050 
-0.0219 

-0.0229 
-0.0740 
-0.0762 
-0.1783 

-0 .1835 

-0.3699 

-0.3844 
-0.4686 
-0.4654 

-0.4198 

-0.4001 

-0 .1382 

-0 .1258 

-0 0357 
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Table C.2 Stresses in stiffener beam close to midspan (psi). 

X-coord Y-coord 

26.7 213.6 

53.4 213.6 

80.1 213.6 

106.8 213.6 

133.5 213.6 

160.2 213.6 

186.9 213.6 

213.6 213.6 

240.3 213.6 

267.0 213.6 

293.7 213.6 

320.4 213.6 

347.1 213.6 

373.8 213.6 

400.5 213.6 

where X-coord = x-coordinate in inches, 

Y-coord = y-coordinate in inches, and 

Bend. St= bending stress in psi (bottom fiber of beam). 

C.6 Example problem for glulam girder bridge 

Bend. St 

-6.2314 

-165.6233 
-6.3236 

-251 .8111 
-0.9444 

-432.4457 
-3.4234 

446.6235 
585.4596 

591.5234 

469.9873 
990.9346 

0.6345 
-767.6345 

-31.2345 

To illustrate the use of the preprocessor, the Cow Gulch Bridge has been chosen with 

the loading being Load Case 1. The material properties and load positions on the bridge have 

already been described in Section 5.2. 

Input data: 

Enter angle of skew in degrees (-ve ifleft end ahead)= 0 

Enter span of bridge in inches = 468 
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Enter full panel width in inches = 48 

Enter panel length in inches along theta = 336 

Enter panel thickness in inches = 5 .125 

Enter number of girders = 6 

Enter girder width in inches= 8.75 

Enter girder thickness in inches= 28.5 

Enter left overhang in inches = 23. 7 5 

Enter right overhang in inches = 23.625 

Partial panels near abutments? (0 for no/ 1 for yes) = 1 

Enter width of partial panel at the bottom = 3 6 

Enter width of partial panel at the top = 0 

Enter element size in inches = 12 

Do all panels have same material properties ( 1 for yes/0 for no)? = 1 

Enter longitudinal E of panels in psi = 1800000 

Enter transverse E of panels in psi = 130000 

Enter shear modulus of panels in psi = 100000 

Do all stringers have same material properties? (1 for yes/0 for no) = 1 

Enter longitudinal modulus of elasticity of girders in psi = 2000000 

Enter transverse modulus of elasticity of girders in psi = 240000 



www.manaraa.com

172 

Enter shear modulus of elasticity of girders in psi = 106000 

Enter curbs (1 for yes. 0 for no)? = 1 

Enter the curb width in inches = 8 

Enter the curb depth in inches = 8 

Enter the modulus of elasticity of the curbs in psi = 1800000 

Enter the number of loads = 6 

Enter X-coordinate of load 1 in inches = 192 

Enter Y-coordinate ofload 1 in inches = 14.6 

Enter the value of load 1 in pounds = -7050 

Enter X-coordinate of load 2 in inches= 264 

Enter Y-coordinate of load 2 in inches = 14.6 

Enter the value of load 2 in pounds = -7050 

Enter X-coordinate of load 3 in inches = 192 

Enter Y-coordinate of load 3 in inches= 203.6 

Enter the value of load 3 in pounds = -9205 

Enter X-coordinate of load 4 in inches = 264 

Enter Y-coordinate of load 4 in inches = 203 .6 

Enter the value of load 4 in pounds = -9205 

Enter X-coordinate of load 5 in inches = 192 
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Enter Y-coordinate of load 5 in inches= 258.6 

Enter the value of load 5 in pounds= -9205 

Enter X-coordinate of load 1 in inches= 264 

Enter Y-coordinate ofload 1 in inches= 258.6 

Enter the value of load 1 in pounds = -9205 

Proceed with solution? (1 for yes/0 for no) = 1 

Output data: 

The output is redirected to the file Results. dat. The output for the above input data 

looks as below. This output can be copied and pasted onto a spreadsheet. This data, however 

gets pasted into one cell of the sheet. To change the format, i.e., to have individual cells 

containing individual data, the user should do the following. 

4. Click on 'Data' on the menu of the Excel sheet. 

5. Click on 'Text to columns'. 

6. In the window that pops up, click on 'Fixed width'. Click on 'Next' and then 'Finish'. 

Note: 

4. Negative value of deflection implies downward deflection, i.e. deflection in the 

negative Z- direction. 

5. Stress results are the bottom stresses for the shell elements. 

6. Negative stress indicates compression and positive stress indicates tension. 
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Table C.3 Midspan girder deflections (inches). 

X-coord Y-coord 

23.75 240 

81.47 240 

139.2 240 

196.93 240 

254.65 240 

312.38 240 

where X-coord = x-coordinate in inches, 

Y-coord = y-coordinate in inches, and 

UZ = deflection in inches. 

Table C.4 Midspan girder bending stresses (psi). 

X-coord Y-coord 

23.75 240 

81.47 240 

139.2 240 

196.93 240 

254.65 240 

312.38 240 

where X-coord = x-coordinate in inches, 

Y-coord = y-coordinate in inches, and 

Ben-Stre = bending stress in psi (bottom fiber of beam). 

uz 
-0.0276 
-0.1497 
-0.3194 

-0.4846 

-0.4794 
-0.2925 

Ben-Stre 

60.4 
219.5 

490.9 

739.6 

721.6 

360.5 
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